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PROBLEM

There is no limit to the amount of data a con-
nected vehicle produces every day. Even a
very conservative estimate of a few dozen
gigabytes per vehicle per hour for a small
fleet of cars shows that it is infeasible to per-
form centralized data processing. The rea-
son is that it is not efficient to transfer big
data via the network. Instead, alternative
approaches for distributed data analysis are
needed. Federated Learning is one such ex-
ample of decentralized data processing.

CONTRIBUTION

Creating an Erlang-based prototype of a
framework for distributed data processing

Highlighting the feasibility of a purely
functional style for the aforementioned
framework

Creating a purely functional implementa-
tion of an artificial neural network in Er-

lang

Conducting a performance comparison of
a Federated Learning implementation ex-
clusively in Erlang with one in which
client processes depend on computations
being executed in C

Demonstrating the suitability of Erlang for
decentralized machine learning tasks via
performance comparisons

RESULTS

The key takeaway is that Erlang is fairly
competitive with C for our use case. The
plots below show that the performance
penalty of Erlang amounts to only a modest
constant factor.
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SOLUTION

Federation Learning The Federated Learn-
ing algorithm performs the following steps:

1. Select a subset ¢ of the set of clients C,
i.e. edge devices

2. Send the current model from the server
to each client € ¢

3. For each client € ¢, update the provided
model based on local data by perform-
ing iterations of a machine learning al-
gorithm

4. For each client € ¢, send the updated
model to the server

5. Aggregate all received local models, for
instance by averaging, in order to con-
struct a new global model

Implementation We implemented a gen-
eral framework in Erlang for distributing ma-
chine learning tasks and added an implemen-
tation of an artificial neural network to it. We
created four prototypes, using the following
approaches: (1) concurrent Erlang, (2) con-
current Erlang plus NIFs, (3) distributed Er-
lang, (4) distributed Erlang and C nodes.

As the source code on the right shows, mes-
sage passing is a very good fit for distributed
machine learning in general, and Federated
Learning in particular. The code is discussed
further in our paper. Here, we draw attention
to how elegantly the general framework can

be implemented in Erlang.

FUTURE WORK

Building on this research, future avenues to
pursue are, first, to scale the performance
comparision and determine at which point
a collection of edge devices outperforms a
powerful server. Second, one could im-
plement other machine learning algorithms
and assess how well they map to distributed
computing. Third, there is the issue of scal-
ing when using very large data sets, which
one may want to look into. Lastly, we could
like to point out that the results of this paper
led to currently ongoing work on designing
and implementing a real-world framework

for distributed data analysis in our research
lab, written in Erlang and Python. We intend
to share details in a future paper.
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The client process receives the current global
model from the server, trains it with locally
available data, and sends the updated local
model to the server:

client () —

receive
{assignment, Model, Server_Pid} —>

Val = train (Model), % computes w_j

Server_Pid ! { update, self(), Val |},
client ()

end .

The server sends each client in a subset of all
clients an assignment containing the current
global model, and afterwards awaits their re-
spective updated models. Subsequently, a
new global model is computed, for instance

by averaging.

server (Client_Pids , Model) —

Subset = select_subset(Client_Pids, []),
% send assignment
lists :map(
fun(X) —
X ! {assignment, Model, self ()} end,
Subset) ,

% receive values
Vals = [ receive
{update, Pid, Val} — Val
end
| | Pid <— Subset |,

J 4

% update model, i.e. compute global 'w

Model_ = update_model(
Model, Vals, length(Client_Pids)),
% Note: it is a simplification to

% use the number of clients

server (Client_Pids, Model ).

SOURCE CODE

Source code artifacts accompanying this
paper are available at https://gitlab.
com/fraunhofer_chalmers_centre/

federated learning erlang, released
under the MIT license.

REFERENCES

[1] McMahan, H Brendan et al. (2016). Communication-efficient learning of deep net-
works from decentralized data, arXiv preprint arXiv:1602.05629.

[2] Yu, Tina et al. (1998). PolyGP: A polymorphic genetic programming system in
Haskell, Genetic Programming 98.

[3] Bauer, Harald et al. (2012). The supercomputer in your pocket. McKinsey on Semi-
conductors, pp. 14-27.

[4] Chen, Deyan et al. (2012). Data security and privacy protection issues in cloud com-
puting. Proc International Conference on Computer Science and Electronics Engi-
neering (ICCSEE), pp. 647-651.

[5] Tene, Omer et al. (2011). Privacy in the age of big data: a time for big decisions. Stan.
L. Rev. Online 64, pp. 63—-69.

[6] Evans-Pughe, Christine (2005). The connected car. IEE Review 51 (1), pp. 42—46.

[7] Lee, Junghoon et al. (2010). A Roadside Unit Placement Scheme for Vehicular Telem-

atics Networks. Advances in Computer Science and Information Technology, pp.
196-202.

[8] Orr, Genevieve B et al. (2003). Neural networks: tricks of the trade (Springer).

[9] Gybenko, G (1989). Approximation by superposition of sigmoidal functions. Mathe-
matics of Control, Signals and Systems 2 (4), pp. 303-314.

[10] Hornik, Kurt (1991). Approximation capabilities of multilayer feedforward net-
works. Neural networks 4 (2), pp. 251-257.

[11] Srihari, Sargur N et al. (1997). Integration of hand-written address interpretation
technology into the united states postal service remote computer reader system. Proc

Fourth International Conference on Document Analysis and Recognition 2, pp. 892—
896.

[12] Silver, David et al. (2016). Mastering the game of Go with deep neural networks and
tree search. Nature 529 (7587), pp. 484—489.

[13] Allison, Lloyd (2005). Models for machine learning and data mining in functional
programming. Journal of Functional Programming 15 (1), pp. 15-32.

[14] Fisher, RA et al. (1936). Iris data set, UC Irvine Machine Learning Repository.
[15] LeCun, Yann et al. (2010). MNIST handwritten digit database, AT&T Labs.



https://gitlab.com/fraunhofer_chalmers_centre/federated_learning_erlang
https://gitlab.com/fraunhofer_chalmers_centre/federated_learning_erlang
https://gitlab.com/fraunhofer_chalmers_centre/federated_learning_erlang

