
Active-Code Replacement in the
OODIDA Data Analytics Platform

Gregor Ulm, Emil Gustavsson, Mats Jirstrand
Fraunhofer-Chalmers Research Centre for Industrial Mathematics

PROBLEM
OODIDA (On-board/Off-board Distributed
Data Analytics) is a data analytics platform
for the automotive domain. It targets fleets
of reference vehicles and is intended for
rapid prototyping. Multiple assignments
can be carried out concurrently. An assign-
ment consists of a task for the selected client
devices and a supplementary task that is car-
ried out on the cloud. The former is the on-
board task, the latter the off-board task. A
simple example is the detection of outliers in
a bounded data stream on each client, which
the cloud simply forwards to the user.
Our system can be deployed automatically.
However, redeploying either the cloud or
client application is disruptive as ongoing
assignments have to be terminated and the
corresponding part of the system restarted.
Thus, we explored approaches for updating
part of the system without interrupting on-
going workflows.

CONTRIBUTION
We describe the design and implementation
of active-code replacement in the OODIDA
platform. This feature has been fully imple-
mented and now further improves the suit-
ability of OODIDA for rapid prototyping of
algorithmic methods. Active-code replace-
ment has been very useful in practice. With
this feature, even the most complex use cases
of OODIDA, such as federated learning [3],
can be implemented ad hoc by a user of the
system.

EVALUATION
Experiment In order to quantify the effect
of active-code replacement, we set up OOD-
IDA in an idealized environment where user,
cloud, and client machines are connected
via Ethernet. We first deployed the sys-
tem from scratch and afterwards deployed a
moderately-sized Python module.
Results A full deployment of the cloud and
client installation take 23.6s and 40.8s, re-
spectively. In contrast, deploying a custom
Python module to the cloud and client takes
20.3ms and 45.4 ms, respectively. All times
are the averages of five runs.
Discussion The quantitative difference be-
tween active-code replacement and a regu-
lar deployment amounts to three orders of
magnitude. However, this comparison un-
derstates the problem of a full redeployment,
which cannot be performed by a mere user
of our system. Furthermore, there are orga-
nizational barriers that make an extension of
any part of OODIDA a long-winded process.
On the other hand, there are deliberate lim-
itations on active-code replacement, which
prevent the deployment of some algorithms,
for instance because they require a missing
library. Thus, both approaches are comple-
mentary rather than competitive.

SOLUTION

Context Figure 1 shows OODIDA in con-
text. This system is distributed on user
(nodes ui and fi), cloud (nodes b and a), and
client hardware (nodes cj and aj). White
nodes represent external applications creat-
ing assignment specifications or performing
tasks, while shaded nodes are used for han-
dling messages and distributing tasks. Node
f is a user front-end for assignment creation
and node u the local user node that commu-
nicates with the central cloud node b, which
turns a global assignment into tasks for in-
dividual nodes. Cloud node a performs off-
board tasks. Node c is a local client node run-
ning on an embedded device. It communi-
cates with an external application a, also run-
ning on the client, that performs computa-
tional tasks.
Idea The user can supply a custom Python
module for the cloud and/or the client. Dis-
tributing custom code piggybacks on the
mechanism for sending assignments. Once
custom code has been distributed, a custom
on-board or off-board method can be used in
an assignment specification.
Implementation Details The user front-
end f performs static and dynamic checks on
the Python source code. Among others, there
are limitations on the used types and the li-
braries that are called. Functions also have
to produce a return value within a certain
amount of time. If those checks are passed,
the provided source code gets encoded, and
turned into the payload of an assignment.

f1 u1

b

c1 a1

f2

...

u2

fm-1

fm

um-1

um

...

a

c2

c3

cn-1

cn

a2

...

a3

an-1

an

...

Figure 1: Schematic overview of the OOD-
IDA platform, showing how the user (fi and
ui), cloud (b and a), and clients (cj and aj) in-
teract. Assignments are issued with the help
of front-end nodes fi. The goal of active-code
replacement is to update software on nodes a
and aj at runtime.

Afterwards, the code is sent to node b, which
forwards it to the specified subsets of clients.
On the client, the original Python module
gets gets decoded and saved. Once deploy-
ment has succeeded, the user receives a status
update. When a user assignment calls custom
code, the corresponding OODIDA code lazily
loads that Python module anew with each
iteration. This makes it possible to update
custom code while an assignment is ongoing.
For instance, the user can adjust parameters
of an algorithm on an ongoing assignment,
which is very helpful for exploratory work in
data analytics.

RELATED WORK
Active-code replacement is an extension of
the OODIDA platform [5], which originated
from ffl-erl, a framework for federated
learning in Erlang/OTP [4]. The latter was
a research system for exploring distributed
data analytics with high levels of concur-
rency.

In terms of descriptions of systems that
perform active-code replacement, Polus
by Chen et al. [1] deserves mention. A
significant difference is that it replaces larger
units of code instead of isolated modules.
It also operates in a multi-threading envi-
ronment instead of the highly concurrent
message-passing environment of OODIDA.
We also noticed a similarity between our
approach and Javelus by Gu et al. [2]. Even
though they focus on updating a stand-alone
Java application as opposed to a distributed
system, their described "lazy update mecha-
nism" likewise only has an effect if a module
is indeed used. This mirrors our approach
of only loading a custom module when it is
needed, albeit our approach is more targeted
towards rapid prototyping, as outlined in
the Solution section.

ACKNOWLEDGEMENTS
This research was supported by the project On-
board/Off-board Distributed Data Analytics (OOD-
IDA) in the funding program FFI: Strategic Vehicle
Research and Innovation (DNR 2016-04260), which is
administered by VINNOVA, the Swedish Government
Agency for Innovation Systems. Adrian Nilsson and Si-
mon Smith assisted with the implementation.

REFERENCES

1. Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.C.: Po-
lus: A powerful live updating system. In: 29th
International Conference on Software Engineering
(ICSE’07). pp. 271–281. IEEE (2007)

2. Gu, T., Cao, C., Xu, C., Ma, X., Zhang, L., Lu, J.:
Javelus: A low disruptive approach to dynamic soft-
ware updates. In: 2012 19th Asia-Pacific Software En-
gineering Conference. vol. 1, pp. 527 – 536. IEEE
(2012)

3. McMahan, H.B., Moore, E., Ramage, D., Hampson,
S., et al.: Communication-efficient learning of deep
networks from decentralized data. arXiv preprint
arXiv:1602.05629 (2016)

4. Ulm, G., Gustavsson, E., Jirstrand, M.: Functional
federated learning in Erlang (ffl-erl). In: Silva, J. (ed.)
Functional and Constraint Logic Programming. pp.
162–178. Springer International Publishing, Cham
(2019)

5. Ulm, G., Gustavsson, E., Jirstrand, M.: OODIDA:
On-board/off-board distributed data analytics for
connected vehicles. arXiv preprint arXiv:1902.00319
(2019)


