
Automatic Robot Trajectory Generation
for Sealing Applications
Systems, control and mechatronics, MSc

Marcus Berg

Department of Electrical Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2025
www.chalmers.se

www.chalmers.se

Master’s thesis 2025

Automatic Robot Trajectory Planning for Sealing
Applications

Marcus Berg

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2025

Automatic Robot Trajectory Generation for Sealing Applications
Marcus Berg

© Marcus Berg, 2025.

Supervisor: Robert Bohlin, Johan S. Carlson
Examiner: Knut Åkesson, Department of Electrical Engineering

Master’s Thesis 2025
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2025

iv

Automatic Robot Trajectory Generation for Sealing Applications
Marcus Berg
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Automatic robot trajectory generation can reduce production time and material use
in automotive manufacturing. This thesis proposes a geometric approach to for-
mulate a nonlinear constrained optimization problem. The objective is to compute
an initial Tool Center Point (TCP) path that achieves a uniform height distribu-
tion along two curves that define the desired sealant edges. The initial TCP path
yields sufficient trajectories for a wide range of curves. However, in scenarios involv-
ing sharp edges, some limitations related to the physical limitations of mechanical
devices restrict the range of feasible sealants. The geometric approach does not
consider all complex sealing behaviors. To capture the complexity of the sealing
process while maintaining fast validation, a neural network was developed that pre-
dicts sealant cross-sections along a TCP path. An obstacle course that introduces
unseen kinematic and spatial features was created to validate the network. The
network performs well on simple geometries, but more development is required for
the model to be deployable in practice. The geometric approach and the surrogate
model build a framework for further optimization of the TCP path.

Keywords: Optimization, trajectory, sealant, CNN, surrogate, trajectory, pixel.

v

Acknowledgements
Firstly, I thank Fraunhofer Chalmers Centre for the opportunity to perform and
support my thesis. I am especially grateful to Robert Bohlin and Johan S. Carlson
for their insightful advice and for helping to shape the direction of this research. I
also want to thank my examiner, Knut Åkesson, for their time and evaluation of
this work. Lastly, I would like to express my gratitude to my family and friends for
their support and encouragement.

Marcus Berg, Gothenburg, June 2025

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

CNN Convolutional Neural Network
FCC Fraunhofer Chalmers Centre
IBOFLOW Immersed Boundary Octree Flow Solver
IPS Industrial Path Solutions
MLP Multilayer Perceptron
MSE Mean Square Error
SGD Stochastic Gradient Descent
SLSQP Sequential Least Squares Quadratic Programming
TCP Tool Center Point

ix

Nomenclature initial solution

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

i Discretizations index

Variables for calculation of optimal intial TCP path

xi Left sealant edge position at index i

yi Right sealant edge position at index i

pi TCP position at at index i

Ri TCP rotation matrix at index i

ai Width of sealant at index i

bi Distance between xi and pi at index i

ci Distance between yi and pi at index i

di Distance between pi and substrate intersection point
βi Entry angle from pi and s xi at index i
γi Entry angle from pi and s yi at index i
ηi Angle between xi and xi+1

ζi Angle between yi and yi+1

ui Arc length along x at index i
wi Arc length along y at index i
u̇i Velocity along x at index i
ẇi Velocity along y at index i
ρi Tilt at index i

κi Drag at index i

xi

ti Time at index i

gi Sealant height at point xi

hi Sealant height at point yi

Ax,i Infinitesimally small area around point xi

Ay,i Infinitesimally small area around point yi

x′
i Direction of x at index i

y′
i Direction of y at index i

oi Center of drag circle at index i
ϱi Radius of drag circle at index i
J Cost function to be minimized
tf Time to perform TCP path
k1 Cost variable penalizing spin
k2 Cost variable penalizing drag
k3 Cost variable penalizing distance of TCP path
V̇ Volume flow of sealant

Variables for Surrogate model

vi Local linear velocity for TCP at index i
ωi Local angular velocity for TCP at index i
gi Local gravity vector for TCP at index i
hi Distance vector at index i

γi Principal rotation vector for TCP for index i to index i+1
Φi Principal angle for TCP for index i to index i+1
êi Principal vector from index i to index i+1
Nm Number of points considered when predicing cross section
W Weight matrix
b Biased vector
cin In channels
cout Out channels
nu Number of pixels per column of cross section
nv Number of pixels per row of cross section
nh Number of elements int height vector

xii

Contents

List of Acronyms ix

Nomenclature xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Background . 1
1.2 Related work . 3
1.3 Research Question . 4
1.4 Research Objectives . 5
1.5 Limitations . 5

2 Theory 7
2.1 Constrained continuous non-linear optimization problem 7
2.2 Neural Networks . 7

2.2.1 Fully Connected Linear Layer 8
2.2.2 Backpropagation . 8
2.2.3 Activation Function . 8
2.2.4 Batch Normalization . 9
2.2.5 Convolutional Neural Network (CNN) 9

2.2.5.1 Residual block . 10
2.2.5.2 Squeeze and Excitation block 10

2.3 IBOFlow Sealing Module . 10

3 Methodology 13
3.1 Geometric Approach . 13

3.1.1 Problem description . 13
3.1.2 Derivation of Equations for Optimization 15

3.1.2.1 Problem Setup . 15
3.1.2.2 Sealant Modeling . 16
3.1.2.3 Calculate TCP . 18

3.1.3 Optimization formulation . 19
3.1.3.1 Variable space . 20
3.1.3.2 Inequality constraints 20

xiii

Contents

3.1.3.3 Equality constraints 20
3.1.3.4 Bounds . 20
3.1.3.5 Initial guess . 21
3.1.3.6 Objective . 21

3.1.4 Evaluation metric . 21
3.2 Surrogate Model . 23

3.2.1 Problem description . 24
3.2.2 Data Collection . 24
3.2.3 Dataset . 25
3.2.4 Network architecture . 28

3.2.4.1 Linear Glass-Box Model 28
3.2.4.2 MLP-CNN Network 29

3.2.5 Training Process . 30
3.2.6 Evaluation Metric . 32

4 Results 33
4.1 Geometric Approach . 33

4.1.1 Different widths . 34
4.1.2 Zic-Zac . 35
4.1.3 Large square . 36
4.1.4 Small square . 37
4.1.5 Plate circle . 38
4.1.6 Plate cube . 39
4.1.7 Ledge . 40
4.1.8 Stairs . 41

4.2 Surrogate Model . 42
4.2.1 Glass-box Model . 42
4.2.2 MLP-CNN Network . 44

5 Discussion 47
5.1 Geometric Approach . 47
5.2 Surrogate model . 49
5.3 Research Question . 50
5.4 Ethical and Sustainability Aspects 51

6 Conclusion 53

xiv

List of Figures

1.1 A flowchart for generating a robot path to produce desired sealants. . 2
1.2 Simulation of the naive approach of using a constant offset, and ve-

locity over the desired sealant center. 3

2.1 Convolutional filter sliding over arbitrary structured data with local
dependencies. 9

3.1 Desired edge curves of the sealant from an above perspective. 14
3.2 Side view of the desired sealant curves, and robot nozzle with a con-

stant volume flow over α. 14
3.3 Area created from bead over an infinitely small time dt and infinitely

small angle dα. 17
3.4 Circle introducing the drag κ. 19
3.5 Comparison of the user defined sealant and the arc length parametrized

sealant. 22
3.6 Test cases used to validate the geometric approach. 23
3.7 The objective for the surrogate model is to minimize the absolute cross

section differnece between the surrogate model and the IPS simulation. 24
3.8 Distorted sealing center path. 25
3.9 Input and output parameters of the neural network. 26
3.10 Comparison of the initial and sampled TCP paths. 26
3.11 Description on obtaining height vector. 27
3.12 Illustration of obtaining a cross section. 28
3.13 Illustration of a dataset point. 28
3.14 Fully connected layer architecture . 29
3.15 MLP CNN Hybrid Architecture. 29
3.16 The network architecture of the CNN block. 30
3.17 The network architecture of the Residual block. 30
3.18 The network architecture of the Squeeze-and-Excitation block. 31
3.19 Training pipeline used for the surrogate model. 31
3.20 Obstacle course created to validate the network. 32

4.1 Simulated sealant for a sealant changing the desired width over the
path. 34

4.2 Parameters for a sealant changing the desired width over the path. . . 34
4.3 Simulated sealant for a zic zac path. 35
4.4 Parameter plots for a zic-zac path. 35

xv

List of Figures

4.5 Simulated sealant for a square path. 36
4.6 Parameters for a square path. 36
4.7 Simulated sealant for a square, with short sides. 37
4.8 Parameters for a smaller square path. 37
4.9 Simulated sealant for a small seam created by a cylinder 38
4.10 Parameter plots for a small seam created by a cylinder. 38
4.11 Simulated sealant for a step created by a box on a plate. 39
4.12 Parameter plots for a step created by a box on a plate. 39
4.13 Comparison of sealant and TCP path depending on optimization of κ. 40
4.14 Parameter plots for a ledge created by two plates. 40
4.15 Simulated sealant for steps created by a boxes on a plate. 41
4.16 Parameter plots for a stair geometry. 41
4.17 Training and validation loss for the glass box model for 500 epochs. . 42
4.18 Training evolution for the glass box model for 500 epochs. 43
4.19 MSE over validation paths. 44
4.20 Training and validation loss for the MLP-CNN hybrid model for 500

epochs. 44
4.21 Training evolution for the CNN model for 500 epochs. 45
4.22 MSE over validation paths for the validation set. 46

5.1 Limit in curve smoothing. 47
5.2 Effect of curve smoothening. 48
5.3 Curve smoothening effect on sealant width going over edges. 48
5.4 TCP location to prevent air bubbles. 49
5.5 Surrogate model predicts reasonable sealant for unexpected behavior

in the simulation software. 50

xvi

List of Tables

3.1 Bounds and standard deviations for various physical parameters. . . . 25

4.1 Parameters used to validate the geometric approach. 33

5.1 Comparison of network performance. 49

xvii

List of Tables

xviii

1
Introduction

The thesis was conducted at the Fraunhofer-Chalmers Centre (FCC), a research
institute dedicated to advancing various industrial applications, particularly focus-
ing on modeling, simulation, and optimizing industrial processes. One of the main
developments is a math-based software tool called Industrial Path Solutions (IPS)
[1], which is widely used in the industry. IPS offers several modules, including cable
simulation, path planner, robot optimization, virtual paint simulation, virtual seal-
ing simulation, intelligently moving manikin, and IPS Immersed Boundary Octree
Flow Solver (IBOFLOW). Currently, it is possible to plan collision-free robot paths
within the software and simulate sealing beads for the planned robot path. However,
the generated robot paths do not guarantee good sealing-bead results. The Master
thesis focuses on connecting the IPS IBOFLOW sealing simulation module with the
robot path planner to generate robot paths that produce desired sealing beads.

1.1 Background
The industry is striving to automate manufacturing processes. Some common ob-
jectives for automatic path planning are minimizing cycling time or ensuring surface
coverage, which has been studied in previous work [2], [3], [4]. For application pro-
cesses, the optimal robot paths differ depending on the situation and the type of
applicator. An optimal path for spray paint differs from sealing processes. Research
has been conducted on optimizing robot paths for spray paint applications, while
there is limited research on optimal robot paths for sealing applications. Approxi-
mately 50 meters of sealant is applied to a car to prevent water leakage and reduce
noise [2], making the application process an important aspect in increasing efficiency
and precision. Optimizing the robot paths can decrease manufacturing time and ma-
terial use by making the trajectories more executable and mathematically ensuring
no extensive material use. It could also prevent mistakes in manually designing the
robot paths.

Sealing spray processes include multi-phase and free surface flows and large moving
geometries, which introduce challenging mathematics and modeling [2]. One of the
leading solvers for sealing processes is the IPS IBOFlow solver, and complementing
this, a robot path planner based on rapidly exploring random trees and probabilistic
roadmap methods has been developed at FCC. Both the IBOFlow solver and robot
path planner are implemented in IPS software. In [2], a framework was developed
that produces collision-free robot paths and then uses the paths for sealing simu-

1

1. Introduction

lations. The path planning framework creates a robot path by ensuring a minimal
deviation from the original curve, with a minimum number of frames and proper
frame orientation. All while avoiding collisions and kinematic issues. However,
the task planner has a weak connection to generate desired sealants. The thesis
addresses this issue by automatically designing initial curves that generate desired
beads. The initial trajectory can be input to the IPS robot path planner to generate
robot paths.

In the thesis, a simplified model is created based on a geometric approach projecting
an equal volume flow along a fixed nozzle angle. The simplified model does not
encapsulate all complex behaviors included in a sealing laydown process. On the
other hand, the IBOFlow solver has proven to be accurate, but it takes time to
perform the simulation. One meter of sealant is simulated in about an hour on a
standard computer [2], which is not feasible for an optimization problem. To create
a more accurate model while maintaining simulation speed, a surrogate model for
the IBOFlow solver is developed. Figure 1.1 illustrates how the thesis fits in a larger
scale project. The geometric approach objective is to calculate a trajectory that
ensures equal sealing height distribution along the sealant edges. The surrogate
model aims to mimic IPS IBOFlow as accurately as possible. To optimize the TCP
path, the geometric approach could serve as an initial guess, and the surrogate model
could be used to evaluate TCP paths. The blue stars correspond to the optimized
TCP path.

Figure 1.1: A flowchart for generating a robot path to produce desired sealants.

2

1. Introduction

An intuitive initial solution is to move the robot tool path with a constant offset
above the desired sealant center with a constant velocity. This strategy introduces
unwanted behavior, especially around corners. Figure 1.2a demonstrates two curves
where ∥x∥ > ∥y∥, where x and y correspond to the desired sealant edges, and ∥∥
denotes the length of a curve. Since x is longer than y means that more sealant
needs to be applied along x to maintain an equal height distribution along the
sealant edges. Figure 1.2b and Figure 1.2c show a sealant geometry for a corner
using the naive approach of a constant offset and velocity.

(a) Curves
defining the
desired edges of
a sealant.

(b) Top view of simulated
sealant using the naive ap-
proach going over a right an-
gle.

(c) Side view of simulated
sealant using the naive ap-
proach going over a right an-
gle.

Figure 1.2: Simulation of the naive approach of using a constant offset, and velocity
over the desired sealant center.

1.2 Related work
In [3], the authors developed a method to generate a TCP path that minimizes spray
paint on the target area to match a user-defined target thickness. The authors ar-
gue that it is computationally expensive to simulate the painting process, which is
impractical in an optimization formulation. Therefore, they used a simplified model
projecting a profile to a target geometry. Their research shows promising results
on flat surfaces and a tractor fender, but several potential issues were observed,
such as sensitivity to initial problem setup. Another observed limitation is that the
projection-based modeling did not capture all physical features of the paint, such as
the electrostatic effect. In [4], the authors developed a framework for automatic path
generation for spray paint. The model requires a point cloud of the target geometry
and spray painting parameters, including the spray gun model, paint flux, desired
paint thickness, and allowed variation. The framework showed promising results for
less complex geometries, but for more complex surfaces, there were problems con-
taining a paint thickness within the allowed variation. In [5], the authors proposed
conceptual approaches taking advantage of existing data sets to create tasks similar
to the training sets to automatically generate robot paths.

For spray paint, it is simple to define what constitutes an optimal target geome-
try. Previous articles have discussed that the optimal laydown includes a target

3

1. Introduction

surface geometry and a desired thickness [3], [4]. It is more challenging to define
what constitutes an optimal sealing bead. In [6], the authors optimize the cross-
section of automotive door sealing to improve door-closing comfort, while having
sufficient sealing qualities. However, research is far from designing the optimal seal-
ing geometry. Improving the sealing process usually depends on experts knowledge
and experimental testing, given the complexity of the sealing process [2].

An Riemannian motion policy (RMP) is a second-order dynamical system that,
for instance, can input position and velocity and calculate acceleration [7]. In [7], a
method is proposed that combines several motion policies from one subspace to an-
other. The term "motion generation" was used to describe RMP, which is suggested
as an umbrella term for motion planning and reactive motion. By defining different
motion policies, the authors managed to navigate through cluttered environments.
In [8], RMPs were used for reactive path planning for robotic silicone sealing. The
authors used a two-camera reactive path planning framework and edge detection to
detect the sealing seam. Thereafter, they used a neural network to predict RMPs.
The authors calculated the control commands by combining the RMPs with the
forward kinematics of the robot system.

A force vision based end effector was developed in [9] to ensure the quality of the
sealing bead during the laydown. The system used computer vision to approxi-
mate the width of the sealant and showed some interesting behaviors for undesired
sealants. However, it was only tested on a flat surface with a straight sealing bead.
In [10], an RGB-D sensor was employed to automate the sealant dispensing process.
The RGB-D sensor is used for part recognition and pose estimation of an object,
thereafter RobotStudio [11] was then used to automatically generate a robot path.
A literature survey on coverage path planning was performed in [12]. The literature
survey covered several approaches ranging from simple methods, such as classical cel-
lular decomposition methods, to more complex ones, including multi-robot methods.

In [13], a convolutional neural network was used to predict optimized collision-free
paths for a drone. The input of the network was the drone’s Inertial Measurement
Units and a depth image. The Inertial Measurement Unit and depth image were
sent through two separate backbones, then fused, and put through a prediction head
including a convolutional network. The training process included a privileged ex-
pert having full knowledge of the surroundings and calculated trajectories at each
timestep using Metropolis-Hastings [14] to sample points and represent the trajec-
tory using cubic B-spline with three control points. The different curves get a score
based on the distance to an obstacle and deviation from the reference trajectory.
The three trajectories with the lowest score were used to train the network.

1.3 Research Question
The thesis aim is to connect the IPS IBOFlow solver with the IPS robot path plan-
ning module. The thesis explores how AI can be used to build a surrogate model
for sealing simulation. It also explores how a geometric approach can be used to

4

1. Introduction

calculate an initial path.

The research questions investigated in the thesis are:
• How do the simulated sealants using a TCP path calculated by a geometric

approach compare to the desired sealant?
• How do sealing simulation predictions made by the surrogate model compare

to simulations performed in IPS IBOFlow?
• How do simple neural networks compare to deep neural networks for sealing

simulations?

1.4 Research Objectives
The research objectives are divided into main objectives and secondary objectives:

Main objectives
• Calculate the optimal TCP path using a geometric approach: Develop

a simplified model and use it to calculate an initial optimal path, ignoring more
complex sealant behaviors.

• Develop a surrogate model for sealing simulations: Develop and train
a neural network to predict sealing geometries based on different TCP paths
and substrates.

Secondary objectives
• Validate the TCP paths achieved by using the geometric approach:

Analyze the generated TCP path by performing IPS IBOFlows simulations
and analyze the generated bead.

• Data collection: Create a diverse dataset by performing IBOFlow simula-
tions with different TCP paths and substrate geometries that is used to train
the surrogate model.

• Post processing of sealing simulation: The sealing simulation needs to
be post-processed to access the data used in the surrogate model.

• Validate surrogate model: Compare the surrogate model predictions with
the results from the IBOFlow simulations.

• Analysis of network architecture: Develop and train simplified models to
validate if the complexity of the deep neural network increases performance
compared to simple interpretable models.

1.5 Limitations
The thesis assumes that the IBOFlow solver is correct and does not address any
limitations the solver has. The surrogate model does not account for varying fluid
properties, such as viscosity, different robot nozzles, or variations in flow rate. A
single set of properties is used throughout the work. The problem of generating
optimal collision-free robot paths is considered a well-studied area and will be out
of scope within this thesis.

5

1. Introduction

6

2
Theory

The section begins with a brief overview of nonlinear optimization, followed by
an explanation of neural networks and an introduction to the IBOFlow simulation
framework.

2.1 Constrained continuous non-linear optimiza-
tion problem

A constrained continuous nonlinear optimization problem is set up in Section 3.1.
The thesis focuses on setting up the problem formulation, and the details behind
how the solver works are beyond the scope of this thesis. However, a brief under-
standing is relevant. The general form of a nonlinear optimization problem is stated
in Equation 2.1.

min
x∈X

J(x), (2.1)

such that g(x) ≥ 0, (2.2)
h(x) = 0. (2.3)

J is a cost function minimized in the variable space X that satisfies the inequality
constraint g(x) and the equality constraints h(x).

Due to the complexity of the problem, a numerical solver is typically used. Many
numerical solvers are based on Newton’s method [15] but utilize more complex con-
cepts such as Karush-Kuhn-Tucker conditions [16] to handle the constraints. The
numerical solvers do not guarantee a global minimum, and different solutions can
be reached depending on the initial guess. However, the solution ensures that the
constraints are satisfied and that no small movements will improve the cost function.

2.2 Neural Networks
Neural networks perform well at learning complex patterns from a large amount
of data. The neural network consists of neurons that are interconnected in layers.
Linear transformations are performed on the input of the neurons using learned
weights and biases and are usually passed through an activation function to intro-
duce nonlinearities. To train the model, the neural network predicts an output that

7

2. Theory

is compared to the ground truth, and the internal weights are updated by minimiz-
ing the loss. Each internal weight contribution to the loss can be calculated through
backpropagation. Thereafter, some optimizer, often utilizing gradient descent, is
used to update the internal weights.

2.2.1 Fully Connected Linear Layer
A fully connected layer is a foundational component of neural networks. Every
neuron in the previous layer is connected to each neuron in the next layer, and every
connection has an associated weight, and every neuron has a bias. The output y
from the linear connected layer can be expressed as described in Equation 2.4.

y = Wx + b (2.4)

W is the weight matrix, b is the bias vector, and x is the input vector. Fully
connected layers are often used at the end of the network to combine learned features
[17]. The fully connected layer can be inefficient for high-dimensional data such as
images since it requires a large number of parameters, which led to the development
of more complex models such as CNNs [18].

2.2.2 Backpropagation
Backpropagation enables the network to learn from data and is used to compute
how each weight and bias contributes to the loss, where the loss describes the error
between the prediction and the ground truth [19]. A prediction is calculated through
a forward pass. A backward pass is applied to calculate the gradient of the loss with
respect to each parameter. The gradients are computed layer by layer, starting from
the output and moving toward the input.

A common problem when training neural networks is vanishing and exploding gra-
dients [20]. Vanishing gradients describe the process where gradients shrink during
backpropagation, which makes the early layers of the network learn slowly. Gradi-
ents can also become exponentially large, leading to unstable weight updates, which
are referred to as exploding gradients [21]. Research has been performed to avoid
unstable gradients, such as batch normalization [22], residual connections [23], and
Rectified Linear Unit activations [24].

2.2.3 Activation Function
Activation functions are incorporated in neural networks to introduce nonlinearity
into the model. An activation function is applied to each neuron to decide whether
the neuron is activated. The most common activation function used is Rectified
Linear Unit (ReLU) due to its simplicity and ability to avoid vanishing gradient [24].
To avoid inactive neurons, Leaky ReLU [25] was introduced, which is described in
Equation 2.5, where leaky refers to the small leak of values when the input is negative
defined by α and x is the input to the activation function.

8

2. Theory

Leaky ReLU: f(x) =

x if x > 0
αx if x ≤ 0

(2.5)

Vanishing gradients are avoided by ensuring the gradients to be 1 [26] for positive
inputs and α for negative as described in Equation 2.6.

Derivative: f ′(x) =

1 if x > 0
α if x ≤ 0

(2.6)

2.2.4 Batch Normalization
A deeper neural network often suffers from internal covariance shift where the dis-
tribution of activations changes during training due to parameters of previous layers
being updated. Equation 2.7 that is introduced in [22] normalizes the output for
each layer during the training process.

x̂(i) = x(i) − µB√
σ2

B + ϵ
, y(i) = γx̂(i) + β (2.7)

Where µb is the batch mean and σb is the batch covariance, ϵ is a small constant to
avoid division by zero, γ and β are learned parameter weights.

2.2.5 Convolutional Neural Network (CNN)
Convolutional networks are a specialized class of neural networks that process struc-
tured data with local dependencies. The convolutional layer applies filters with
trainable parameters over an input by sliding a window with a stride, which enables
the network to learn local features [18]. Figure 2.1 illustrates a convolutional filter
sliding over an input with a stride of 1 and kernel size of (3,3).

Figure 2.1: Convolutional filter sliding over arbitrary structured data with local
dependencies.

Equation 2.8 is used to calculate a single output pixel where (N,M) is the kernel
size.

yi,j =
M−1∑
m=0

N−1∑
n=0

xi+m,j+n · wm,n (2.8)

9

2. Theory

2.2.5.1 Residual block

Residual nets were introduced in [23] and addressed the vanishing gradient problem
in deep convolution neural networks by skipping connections. The residual block is
described in Equation 2.9.

y = F(x) + x (2.9)

Where F(x) usually consists of convolutional layers, followed by batch normaliza-
tion and ReLU layer. Skipping connections allow improved gradient flow during
backpropagation.

2.2.5.2 Squeeze and Excitation block

Convolutional neural networks focus on extracting local features, and all channels are
treated equally. However, the features might be of varying importance. Squeeze-
and-Excitation [27] address this limitation by assigning different weights to each
channel. Firstly, the channels are squeezed by applying global average pooling to
each channel. Thereafter, the pooled features are passed through two fully con-
nected linear layers to generate a set of channels-wise weights. Lastly, element-wise
multiplication is performed between the feature maps and channel-wise weights to
emphasize important features and suppress the irrelevant ones.

2.3 IBOFlow Sealing Module

The IPS IBOFlow solver is used both to validate the geometric approach presented
in Section 3.1 and to generate data to the surrogate model presented in Section 3.2.
Further theory about the IPS solver is described in [2], but a short summation is
presented below.

IPS can be used to perform accurate sealing simulations for various robot paths,
sealing materials, target geometries, and robot nozzles by utilizing finite volume
discretizations [28] on a cartesian octree grid that can be dynamically refined. The
volume of fluids [29] is used to track the fluid interface between air and sealant. To
avoid having to create meshes for complex geometries, IPS uses an immersed bound-
ary method discussed in [30]. The immersed boundary method was first introduced
in [31] and is a method that modifies the fluid equations close to the solid without
having to modify the mesh.

The Navier Stokes Equation [32] is used to model the motion of an incompress-
ible fluid and is presented in Equations 2.10, 2.11. ρ is the fluid density, p is the
pressure, µ is the viscosity, f is the external force, and u is the fluid velocity. The
viscosity behaves differently under stress. As described in [33], a material can be
modeled as a Bingham fluid, where the fluid behaves like a solid at low shear stresses
and as a fluid at higher stresses.

10

2. Theory

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + µ∇2u + f (2.10)

∇ · u = 0 (2.11)

11

2. Theory

12

3
Methodology

In Section 3.1, an optimal TCP path calculated based on a geometric approach is
introduced. The simplified model does not encapsulate all complex sealant behavior
while running a full sealing simulation is time-consuming and is not feasible for
optimization problems. Therefore, a surrogate model was developed to capture
more complex sealant behaviors while maintaining quick validation, as described
further in Section 3.2.

3.1 Geometric Approach
The following section covers how the initial TCP path is adjusted based on a sim-
plified modeling of the sealant. First, the problem is described in Section 3.1.1,
thereafter a derivation of the equations used in the optimization formulation is ex-
plained in Section 3.1.2, then the optimization formulation is introduced in Section
3.1.3. Lastly, the evaluation metric is introduced in Section 3.1.4.

3.1.1 Problem description
Given two curves x and y describing the desired sealant edges and a nozzle with
constant volume flow over the nozzle angle α. The robot path has freedom in its
offset to the surface, velocity profile, tilt, drag, and spin. The aim is to calculate
a Tool Center Point (TCP) path that uses a geometric approach to achieve equal
sealant height distribution along x and y, ignoring what is happening between the
sealant edges.

The sealant is illustrated from an above perspective in Figure 3.1. Where x, and y
are curves describing the desired sealant edges. x0 and y0 are the start points, while
xN and yN are the end points. The system is discretized in N time steps from t0 to
tN . The sealant edge locations where the spray should intersect the desired sealant
edges at timestep ti are denoted xi, yi, while x′

i, y′
i are the sealant edge directions.

ηi is the angle between ⃗xiyi and x′
i, and ζi is the angle between ⃗yixi and y′

i. The
distance between xi and yi is labeled ai.

The TCP point pi together with the points xi and yi at time ti is illustrated from
a side perspective in Figure 3.2. ci denotes the distance between pi and xi, while
bi denotes distance between pi and yi. βi is defined as the angle between ⃗xiyi and
⃗xipi, and γi is defined as the angle between ⃗yixi and ⃗yipi. di is the distance between

13

3. Methodology

Figure 3.1: Desired edge curves of the sealant from an above perspective.

pi and the intersection point between ⃗xiyi and the bisection of α, ρi is the tilt and
is defined as the angle between ⃗xiyi and bisection of α.

Figure 3.2: Side view of the desired sealant curves, and robot nozzle with a constant
volume flow over α.

14

3. Methodology

3.1.2 Derivation of Equations for Optimization

This section derives the equations that are used in the optimization formulation.
The problem setup is explained in Section 3.1.2.1, the sealant modeling is described
in Section 3.1.2.2, and the calculation of the TCP path is presented in Section
3.1.2.3.

3.1.2.1 Problem Setup

Firstly, x and y are arc length parameterized as described in Equations 3.1, 3.2.

x = x(s), |x′(s)| = 1, x(0) = x0, x(Lx) = xN (3.1)
y = y(s), |y′(s)| = 1, y(0) = y0, y(Ly) = yN (3.2)

Let u(t) and w(t) be the arc length at time t, where u(t) ∈ [0, Lx] and w(t) ∈ [0, Ly].
Where x(u(t)) and y(w(t)) are described in Equations 3.3, 3.4.

x = x(u(t)), u(0) = 0, u(T) = Lx (3.3)
y = y(w(t)), w(0) = 0, w(T) = Ly (3.4)

The system is discretized into N time steps as described in Equations 3.5, 3.6, 3.7.

0 = t0 < t1 < · · · < tN = T (3.5)
xi = x(u(ti)), ui = u(ti), u0 = 0, uN = Lx (3.6)
yi = y(w(ti)), wi = w(ti), w0 = 0, wN = Ly (3.7)

Given u̇0 · · · u̇N and ẇ0 · · · ẇN the derivatives of x(u(t)) and y(w(t)) are calculated
in Equations 3.8, 3.9.

ẋi(u(ti)) = x′
i · u̇i (3.8)

ẏi(w(ti)) = y′
i · ẇi (3.9)

Assuming continuous piecewise linear velocity ui and wi can be calculated as de-
scribed in Equations 3.10, 3.11.

ui = ui−1 + u̇i−1 + u̇i

2 (ti − ti−1), u0 = 0 (3.10)

wi = wi−1 + ẇi−1 + ẇi

2 (ti − ti−1), w0 = 0 (3.11)

The arc lengths u =
[
u0 · · · uN

]T
and w =

[
w0 · · · wN

]T
can be calcu-

lated as described in Equations 3.12, 3.13, where u̇ =
[
u̇0 · · · u̇N

]T
and ẇ =

15

3. Methodology

[
ẇ0 · · · ẇN

]T
.

u =



0 0 0 · · · 0
t1−t0

2
t1−t0

2 0 · · · ...
... t2−t0

2
. . . · · · ...

... 0
t1−t0

2
t2−t0

2 · · · tN −tN−2
2

tN −tN−1
2


u̇ (3.12)

w =



0 0 0 · · · 0
t1−t0

2
t1−t0

2 0 · · · ...
... t2−t0

2
. . . · · · ...

... 0
t1−t0

2
t2−t0

2 · · · tN −tN−2
2

tN −tN−1
2


ẇ (3.13)

For any u̇i and ẇi, we have ui and wi, thus for every i = 1,··· , N we can compute xi,
yi, ai, ηi, and ζi. Where ai is calculated in Equation 3.14.

ai = ∥xi − yi∥ (3.14)

While ηi and ζi can be calculated from the definition of the cross product as described
in Equations 3.15, 3.16.

sin(ηi) = ∥x′
i × ⃗xiyi∥

∥x′
i∥∥ ⃗xiyi∥

(3.15)

sin(ζi) = ∥y′
i × ⃗yixi∥

∥y′
i∥∥ ⃗yixi∥

(3.16)

⃗xiyi and ⃗yixi are calculated in Equations 3.17 3.18.

⃗xiyi = yi − xi (3.17)
⃗yixi = xi − yi (3.18)

∴ Given u̇, ẇ, then u, w, η, ζ, a can be calculated.

3.1.2.2 Sealant Modeling

Assuming equal volume flow across α, the volume for a small angle dα can be
calculated as described in Equation 3.19.

V = ϕ · dα

α
· dt (3.19)

For an infinitesimally small angle dα and infinitesimally short time dt, the corre-
sponding area around xi is illustrated in Figure 3.3.

16

3. Methodology

Figure 3.3: Area created from bead over an infinitely small time dt and infinitely
small angle dα.

The area corresponding to the points on both sides of the sealant is calculated
in Equations 3.20, 3.21.

Axi = u̇i · dt · sin(ηi) · ci · dα

sin(βi)
(3.20)

Ayi = ẇi · dt · sin(ζi) · bi · dα

sin(γi)
(3.21)

The heights at point xi and yi is calculated in Equations 3.22, 3.23.

gi = V

Axi

= ϕ · sin(βi)
α · ci · u̇i · sin(ηi)

(3.22)

hi = V

Ayi

= ϕ · sin(γi)
α · bi · ẇi · sin(ζi)

(3.23)

Considering the triangle in Figure 3.2, the law of sines theorem results in Equation
3.24.

sin(α)
ai

= sin(βi)
bi

= sin(γi)
ci

⇒ sin(βi)
sin(γi)

= bi

ci

(3.24)

Setting the heights gi and hi equal is shown in Equation 3.25.

gi = hi ⇔ sin(βi)
ci · u̇i · sin(ηi)

= sin(γi)
bi · ẇi · sin(ζi)

(3.25)

Rearranging Equation 3.25, results in Equation 3.26.

bi

ci

· sin(βi)
sin(γi)

= u̇i · sin(ηi)
ẇi · sin(ζi)

(3.26)

17

3. Methodology

Using Equation 3.24, the left side of Equation 3.26 can be written as Equation 3.27.

bi

ci

· sin(βi)
sin(γi)

= b2
i

c2
i

= µ2
i (3.27)

Combining Equation 3.26 and Equation 3.27 results in Equation 3.28. Since ηi and ζi

are known from u̇i and ẇi as described in Equations 3.15, 3.16, µi is only dependent
on u̇i and ẇi.

µ2
i = u̇i · sin(ηi)

ẇi · sin(ζi)
(3.28)

From Equation 3.27, bi can be expressed from ci and µi as described in Equation
3.29.

bi = µi · ci (3.29)
Using Equation 3.29 and the law of cosines in the triangle illustrated in Figure 3.2,
it is possible to describe ci from µi and ai, as described in Equations 3.30, 3.31.

a2
i = b2

i + c2
i − 2 · bi · ci · cos(α) (3.30)

ci =

√√√√ a2
i

µ2
i − 2 · µi · cos(α) + 1 (3.31)

By using bi and ci, and Equation 3.24. βi and γi can be calculated as described in
Equations 3.32, 3.33.

βi = sin−1
(

bi · sin(α)
ai

)
(3.32)

γi = sin−1
(

ci · sin(α)
ai

)
(3.33)

From γi, ρi can be calculated as described in Equation 3.34

ρi = π

2 − (π − α

2 − γi) = α

2 + γi − π

2 (3.34)

∴ Given u̇ and ẇ, then u, w, a, b, c, β, γ, ρ, η, ζ, g, h can be calculated.

3.1.2.3 Calculate TCP

Considering Figure 3.4a, the point on the circle pi can be calculated based on xi,
βi, ρi and ci. Thereafter, consider the sealants xz-plane illustrated in Figure 3.4b
where another circle centered in oi with the radius ϱi. Where ϱi is the perpendicular
distance between pi and ⃗xiyi in the yz-plane. The drag angle is denoted κi.
The TCP point pi is calculated in Equation 3.35.

pi = xi + cos(π

2 − κi)ϱix⃗i + cos(βi)ciy⃗i − sin(π

2 − κi)ϱiz⃗i (3.35)

Where the sealant frame can be calculated by Equations 3.36, 3.38, 3.37.

y⃗i = yi − xi

∥yi − xi∥
(3.36)

18

3. Methodology

(a) Side view of TCP, in the sealants
yz-plane.

(b) Side view of TCP, in the sealants
xz-plane.

Figure 3.4: Circle introducing the drag κ.

The vector z⃗i of the sealant is calculated in Equation 3.37.

z⃗i = (x′
i + y′

i) × y⃗i

∥(x′
i + y′

i) × y⃗i∥
(3.37)

The direction of the bead is calculated in Equation 3.38.

x⃗i = y⃗i × z⃗i

∥y⃗i × z⃗i∥
(3.38)

The rotation matrix of the sealant frame can be defined as described in Equation
3.39.

Rsi =

x⃗i
y⃗i
z⃗i


T

(3.39)

The TCP rotation matrix is calculated in Equation 3.40

Ri = R(−ρi, x⃗i)R(κi, y⃗i)Rsi (3.40)

∴ Given u̇, ẇ and κ, the TCP path p and its rotation matrices R are determined.

3.1.3 Optimization formulation
The problem can be formulated as a constrained continuous non-linear optimization
problem. The general form of the optimization problem is stated in Equation 3.41.

min
x∈X

J(x), (3.41)

such that g(x) ≥ 0, (3.42)
h(x) = 0. (3.43)

19

3. Methodology

Where J is a cost function minimized in the variable space X that satisfies the in-
equality constraints g(x) and the equality constraints h(x). Scipy [34] optimization
package with the Sequential Least Squares Programming (SLSQP) is used as the
solver.

3.1.3.1 Variable space

As described in Section 3.1.2, the TCP points p and orientations R depends on u̇,
ẇ, and κ. Equations 3.44, 3.45 show the fully indexed notation where N is the
number of waypoints and spans the free variable space.

u̇ =
[
u̇0 · · · ˙uN

]
(3.44)

ẇ =
[
ẇ0 · · · ẇN

]
(3.45)

κ =
[
κ0 · · · κN

]
(3.46)

3.1.3.2 Inequality constraints

The inequality constraints described in Equations 3.47, 3.48, 3.49 specify the dis-
tance and tilt constraints.

bmin ≤ b ≤ bmax (3.47)
cmin ≤ c ≤ cmax (3.48)
ρmin ≤ ρ ≤ ρmax (3.49)

3.1.3.3 Equality constraints

The equality constraints are described in Equations 3.50, 3.51, 3.52, 3.53, 3.54.
Where the height is supposed to be equal along the sealant, end at the endpoints,
and have an initial and end drag of zero. The constraint on κ0 and κN was introduced
considering the objective of minimizing the TCP trajectory distance. Without the
constraint, most trajectories start and end close to their bounds to minimize the
distance, which is an undesired behavior.

gi = gi−1 (3.50)
uN = Lx (3.51)
wN = Ly (3.52)

κ0 = 0 (3.53)
κN = 0 (3.54)

3.1.3.4 Bounds

Drag and velocities outside certain intervals result in undesired sealants. Therefore,
bounds on the free variables were introduced. The bounds is described in Equations
3.55, 3.56, 3.57.

20

3. Methodology

vmin ≤ u̇ ≤ vmax (3.55)
vmin ≤ ẇ ≤ vmax (3.56)
κmin ≤ κ ≤ κmax (3.57)

3.1.3.5 Initial guess

The initial guess for the optimization problem is specified as the average velocity
along the curves and initial drag of zero, which is shown in Equations 3.58, 3.59,
3.60.

u̇0 = Lx

tf

(3.58)

ẇ0 = Ly

tf

(3.59)

κ0 = 0 (3.60)

The final time tf is a user input and serves as a scale of the sealant height. A shorter
final time results in a smaller sealant height.

3.1.3.6 Objective

The cost function is introduced in Equation 3.61, where k1, k2, and k3 are chosen
weight constants.

J = k1(|sin(ηi) − 1| + |sin(ζi) − 1|) + k2|κi| + k3∥pi − pi−1∥ (3.61)
The term |sin(ηi) − 1| + |sin(ζi) − 1| minimizes how much the TCP direction to
diverge from x′ and y′, and the ∥pi − pi−1∥ minimizes the robot nozzles distance
and ensures smooth TCP movements. Lastly, the |κi| term maintains the drag to
oscillate around 0.

3.1.4 Evaluation metric
The geometric approach is validated by creating test cases and then visually exam-
ining the TCP path so the solution behaves as expected. An IBOFlow sealing simu-
lation is then performed to validate the resulting sealant. Test cases were obtained
by manually defining the desired x and y as illustrated in Figure 3.5a. Secondly, the
curves were interpolated, and Bezier was used to smooth the curve. The accuracy
of how the curve follows the original curve depends on the number of evaluation
points. Lastly, the curve was arc length parametrized as illustrated in Figure 3.5b
using the Euclidean distance between the points as arc length.

The test cases consist of the eight cases illustrated in Figure 3.6. The cases persist
of a zic-zac pattern, large square, small square, half circle with a gap, seam, varying

21

3. Methodology

(a) Initial user defined sealant. (b) Arc length parametrized sealant

Figure 3.5: Comparison of the user defined sealant and the arc length parametrized
sealant.

width, and staircase. The left line is the arc length parametrized curve x, and the
right corresponds to y. For each case, the graphs corresponding to the line velocities
u̇, ẇ, the arc locations u, w, the constraint distances b, c, d, the width a, the sealant
heights g, h, the tilt ρ, the line spin angles η, ζ, the entry angles β, γ, and drag κ
is illustrated and is critically examined to see if they follow the expected behavior,
which is discussed more in Section 4.1.

22

3. Methodology

(a) The desired edges of a sealant
with a varying width.

(b) The desired edges of a sealant
in a zic-zac pattern.

(c) The desired edges of a sealant
as a square.

(d) The desired edges of a sealant
as a smaller square.

(e) The desired edges of a sealant
as a half circle with a small seam.

(f) The desired edges of a sealant
in corner.

(g) Desired edges of a sealant for
going over a corner.

(h) Desired sealant for going over
a stair geometry.

Figure 3.6: Test cases used to validate the geometric approach.

3.2 Surrogate Model
While modifying the initial TCP path described in Section 3.1 is sufficient for gen-
erating an initial trajectory based on simple geometric considerations, it does not

23

3. Methodology

include some complex sealant behavior. A surrogate model was developed to encap-
sulate more complex behavior for the sealant while maintaining validation speed.

3.2.1 Problem description
Based on a given TCP path and a target geometry, an approximate sealing geometry
is determined. It is possible to use a training set of known sealing geometries,
target geometries, and TCP paths to predict future sealants, for instance, by using
statistical curve fitting or neural networks. The goal is to minimize the accumulated
cross section difference between the sealant predicted by the surrogate model and
the IPS simulation illustrated in Figure 3.7. The green line corresponds to the IPS
simulation, the red line is the surrogate models prediction, and the black cuboid
corresponds to the desired sealant.

Figure 3.7: The objective for the surrogate model is to minimize the absolute cross
section differnece between the surrogate model and the IPS simulation.

3.2.2 Data Collection
The training data was collected using the IPS IBOFlow simulation framework. The
simulations used a mass flow of 15 g/s and a nozzle for flat beads. Initial sealing
center points and substrate geometries were created by hand in IPS, where each
point consists of a location and an orientation. An example of a sealing center
path is illustrated in Figure 3.8a. The TCP is located along a sphere with its
center in the sealing center point. The sphere radius is the offset, and the location
and orientation of the TCP is described by the tilt, drag, and spin. To expand and
ensure a diverse dataset, the TCP offset, velocity, drag, spin, and tilt were randomly
initialized within the boundaries of the surrogate model, as presented in Table 3.1.
The bounds in Table 3.1 were experimentally obtained to ensure reasonable sealant
behaviors. The TCP path is distorted using a normal distribution. The next point
is located along a sphere centered around the second sealing center point and was
randomly varied from the initialized values drawn from a normal distribution and
projected into the domain, where the standard deviations are presented in Table 3.1.
For the training set, 25 sealant center paths were manually generated to encapsulate
different spatial behaviors. Spanning geometries from a simple plate geometry to
slightly more complex geometries such as the half circle or box geometry illustrated

24

3. Methodology

Figure 3.6e, 3.6f. To include different kinematic behaviors, 100 randomized paths
were generated for each sealing center path, which resulted in a data set of 2500
paths. A randomized TCP path is illustrated in Figure 3.8b. The network was
trained on relatively simple data due to time constraints. More complex geometries
could be incorporated into the dataset but would require a larger volume of data.
Due to time constraints, the dataset was limited not to consider cases going over
corners as illustrated in Figures 3.6g, 3.6h.

(a) A sealant center path located
around a half circle. (b) A randomly generated TCP path.

Figure 3.8: Distorted sealing center path.

Parameter Min Bound Max Bound Standard Deviation
Offset 20 mm 40 mm 2.5 mm
Velocity 0.2 m/s 0.5 m/s 0.02 m/s
Tilt −30◦ 30◦ 7.5◦

Drag −15◦ 15◦ 5◦

Spin −7.5◦ 7.5◦ 3.75◦

Table 3.1: Bounds and standard deviations for various physical parameters.

3.2.3 Dataset
The input of the network is the local linear velocity v, the local angular velocity
ω, the local gravity vector g, and a height vector h measuring the distance to the
substrate. The sealant also depends on the past and the future of the TCP path. To
address this, both past and future velocities, gravity, and height vectors are used to
predict the sealant, the number of evalaution points are denoted Nm. The network
will predict a cross-section of the sealant. Figure 3.9 summarizes the input and
output of the neural network.

The TCP path consists of the global locations, rotation matrices, and time stamps.
The original curve is interpolated to create samples with a 1-centimeter interval,
assuming linear constant velocities between TCP points. Figure 3.10 illustrates an
initial and a sampled TCP path. The green square is the substrate, and the coordi-
nate frame centers illustrates the tool center points. The initial TCP path is shown

25

3. Methodology

Figure 3.9: Input and output parameters of the neural network.

in Figure 3.10a, and the sampled path is portrayed in Figure 3.10b. The red arrows
illustrate the x direction of the nozzle, the green arrow shows the y direction, and
the blue arrow shows the z direction.

Let pi denote the global position, Ri the global rotation matrix, and ti the time at

(a) Initial TCP path. (b) Sampled TCP path.

Figure 3.10: Comparison of the initial and sampled TCP paths.

frame i. The input from the TCP file can be summarized as described in Equation
3.62.

p =
[
p1 · · · pN

]
R =

[
R1 · · · RN

]
t =

[
t1 · · · tn

]
(3.62)

The global velocity can be calculated using Equation 3.63.

vg,i = ∆pi

∆ti

(3.63)

Where ∆pi = pi+1 − pi and ∆t = ti+1 − ti. The local velocity vector is calculated
in Equation 3.64 using that R−1 = RT .

vi = Ri
T vg,i (3.64)

The local gravity vector is calculated using Equation 3.65, where gglobal =
[
0 0 −g

]T
.

gi = Ri
T gglobal (3.65)

26

3. Methodology

The local angular velocity is calculated in Equation 3.66.

ωi = γi

∆ti

(3.66)

Where γ corresponds to the principal rotation vector calculated in Equation 3.67.

γi = Φiêi (3.67)

Where ê is the principal vector describing the vector where only one rotation is
required to go from frame i to i+1, which is the eigenvector corresponding to the
eigenvalue 1 of the local rotation matrix between frame i and i+1. Φi is the principal
angle describing the magnitude around the principal vector to go from frame i to
frame i+1.

The height vector h is obtained using ray tracing and offsetting the base of the ray
trace as illustrated in Figure 3.11. The gray rectangle portrays the cross-section,
the blue dots are the raytrace intersection points with the substrate, and the red
dot is the current TCP point. The TCP base is offset with an interval of 1 mm.

Figure 3.11: Description on obtaining height vector.

The cross-section is obtained by performing a ray trace from the TCP to the sub-
strate illustrated in Figure 3.12 and then adding a window with the same frame
orientation as the TCP. The window size is 4 cm in width and 2 cm in height, with
one pixel per mm.

An example of the dataset point is illustrated in Figure 3.13. Where the purple
arrow is the local linear velocity, the brown arrow is the local gravity vector. The
blue points are the ray traces intersecting with the substrate. The angular velocity
is not included in the illustration but is a part of the data point. Additionally, the
same data is included in Nm−1

2 samples before and after the sampled TCP.

27

3. Methodology

Figure 3.12: Illustration of obtaining a cross section.

Figure 3.13: Illustration of a dataset point.

3.2.4 Network architecture
This section introduces the network architecture used in the project, Section 3.2.4.1
introduces the glass-box model, and Section 3.2.4.2 describes a neural network fea-
turing Multi Layer Perceptrons (MLP) and convolutional neural network (CNN).
Both network introduced do not encapsulate the sequential data and are using a
Nm = 0.

3.2.4.1 Linear Glass-Box Model

A fully connected layer was chosen as a glass box model due to its interpretability.
In contrast to black-box models, the linear layer offers direct inspection of the model
parameters where each weight linearly contributes an input element, which enables
transparent analysis of input features. The fully connected linear layer is illustrated
in Figure 3.14.
The fully connected linear layer for Nm = 1 is described in Equation 3.68.

y = Wx + b (3.68)

Where x =
[
h1, . . . , hn, vx, vy, vz, ωx, ωy, ωz, gx, gy, gz

]T
is the input vector, and y =[

p1 · · · pnu·nw

]
is the output vector. W is the weight matrix, and b is the bias

vector which is described in Equation 3.69. Where nh is the number of elements
included in the height vector and nu × nv is the resolution of the output image.

28

3. Methodology

Figure 3.14: Fully connected layer architecture

W =


w1,1 · · · w1,nu·nv

· · ·
wnh+9,1 · · · wnh+9,nu·nv

 b =
[
b1 · · · bnu·nw

]T
(3.69)

3.2.4.2 MLP-CNN Network

Multilayer perceptrons (MLP) were used to extract features from the input data
and a convolutional network was chosen for pixel prediction because of its ability
to capture local patterns and structure. The hybrid MLP CNN architecture is il-
lustrated in Figure 3.15. Where UF stands for an unflattening operation, and CNN
stands for convolutional neural network.

Figure 3.15: MLP CNN Hybrid Architecture.

Individual backbones are used for the kinematic and spatial input groups to ex-
tract specialized kinematic and spatial features. The gravity vector, linear, and

29

3. Methodology

angular velocities are kinematically related and forms the kinematic input group,
while the spatial input group consist of the height vector. Merging the kinematical
states with the height information enables the network to reason the dynamic with
the spatial states. An MLP combines the different feature inputs into a compact
representation. Lastly, a CNN architecture was applied to consider nearby pixels.

The MLP blocks consist of two fully connected layers, where each layer is followed
by a batch norm, and leaky ReLU layer. The batch norm layer reduces the inter-
nal covariance shift, making the network more reliable. The Leaky ReLU layer is
used to introduce non-linearity, allowing the model to learn more complex nonlinear
relations. The CNN incorporated residual blocks (RE block) [23] and squeeze ex-
citement blocks (SE block) [27]. The CNN architecture is illustrated in Figure 3.16.

Figure 3.16: The network architecture of the CNN block.

The residual blocks skip connections to improve gradient flow and refinement learn-
ing. A residual block is shown in Figure 3.17. Where nr and nc denotes the input
dimension to the block.

Figure 3.17: The network architecture of the Residual block.

Squeeze-and-Excitation (SE-blocks) were integrated into the network to apply channel-
wise attention, enabling the network to emphasize the relevant features. A SE-block
is visualized in Figure 3.18.

3.2.5 Training Process
To train the networks PyTorch [35] was chosen because of its user-friendliness and
integrated GPU acceleration. Additionally, it is widely adopted in industry and
academia and integrates with libraries such as TorchVision [36], a helpful library for
image tasks.

30

3. Methodology

Figure 3.18: The network architecture of the Squeeze-and-Excitation block.

The training pipeline is summarized in Figure 3.19. Given a substrate geometry
and a TCP path, a sealing simulation could be performed in IPS. From the TCP
path, the substrate geometry and simulation, the input, and the ground truth, also
called the label, can be obtained. The data is randomly split into mini-batches,
which represent the number of data samples seen before updating the networks in-
ternal weights. The networks prediction is compared to the ground truth through a
loss function. The loss function is chosen as the Mean Square Error (MSE) since it
is intuitive and directly punishes the difference between the predicted pixel and the
ground truth. Thereafter, backpropagation is performed to validate how much each
internal weight contributed to the loss. The weights are then updated using an opti-
mizer. Stochastic Gradient Descent (SGD) [37] was chosen as the optimizer because
of its intuitiveness and generalization properties, making SGD a suitable choice for
pixel prediction. While adaptive optimizers, such as Adams [38], outperform SGD
in early training, the adaptive optimizers often result in worse generalization per-
formance [39]. The training runs over epochs, which refers to the number of times
the network will see the full dataset.

Figure 3.19: Training pipeline used for the surrogate model.

31

3. Methodology

3.2.6 Evaluation Metric
The performance of the models will be evaluated through training error, validation
error, and visual inspection. The training error refers to the model’s MSE on the
training set, and the validation error refers to the model’s MSE on unseen data. Ad-
ditionally, visual inspection is performed to identify potential defects not captured
by MSE alone.

The model was validated on an obstacle course with geometries not included in
the training process which is illustrated in Figure 3.20. Twelve paths were created
where each path was randomly generated as described in Section 3.2.2.

Figure 3.20: Obstacle course created to validate the network.

32

4
Results

This chapter presents the results of the geometric approach and the surrogate model.
The calculated optimal TCP is visualized and simulated. Thereafter, the training
and validation loss for the glass box model and CNN are presented, and the predicted
cross-sections are visualized.

4.1 Geometric Approach
The following section demonstrates the results for each test case presented in Sec-
tion 3.1.4. The constraints applied during the optimization are presented in Table
4.1. Scipy [34] Sequential Least-Squares Quadratic Programming (SLSQP) solver
was chosen to solve the optimization problem.

As described in Section 3.1.4, eight test cases were introduced. For each case the
graphs corresponding to the line velocities u̇, ẇ, the arc locations u, w, the distances
b, c, the width a, the sealant heights g, h, the tilt ρ, the line spin angles η, ζ, the
entry angles β, γ, and drag κ are illustrated. The described graphs are referred to
as the parameter plots.

Parameter Constraint value
amin 10 mm
amax 100 mm
ρmin −π

6
ρmax

π
6

κmin −π
6

κmax
π
6

u̇min 0.1 m/s
u̇max 1 m/s
htol 0.01 mm
k1 1
k2 10
k3 100

Table 4.1: Parameters used to validate the geometric approach.

33

4. Results

4.1.1 Different widths
The different width case exhibits expected simulation results, which is illustrated in
Figure 4.1.

Figure 4.1: Simulated sealant for a sealant changing the desired width over the
path.

The parameter graphs are shown in Figure 4.2. The line velocities increase while
the offset decreases when the desired width is low, and the offset from the substrate
increases while the velocity decreases when the sealant width is large. Constraints
regarding the sealant height and geometric constraints are achieved. The geometric
constraints refer to the distance b, c, and the angle constraints are the tilt ρ and
the drag κ.

Figure 4.2: Parameters for a sealant changing the desired width over the path.

34

4. Results

4.1.2 Zic-Zac
The zic-zac case reveals promising results as illustrated in Figure 4.3.

Figure 4.3: Simulated sealant for a zic zac path.

The parameter graphs are presented in Figure 4.4. Looking at the velocity profile
along x, and y. The velocity of the outer curve increases when the curve turns.
However, the sealing distribution is compensated by the tilt ρ. All geometric bounds
and sealant height constraints are fulfilled.

Figure 4.4: Parameter plots for a zic-zac path.

35

4. Results

4.1.3 Large square
The large square shows results as expected which is presented in Figure 4.5.

Figure 4.5: Simulated sealant for a square path.

The velocity along the outer curve is higher, especially around the corners. While
the tilt slightly increases, which is displayed in Figure 4.6. All geometric parameters
are within its constraints.

Figure 4.6: Parameters for a square path.

36

4. Results

4.1.4 Small square
The path for the small square path is reaching an iteration limit, the best results
while not validating any constraints is illustrated in Figure 4.7.

Figure 4.7: Simulated sealant for a square, with short sides.

The problem has no feasible solution, as the constraints are too conservative to find
a solution with an equal height distribution along the sealant edges. Increasing the
allowed tilt would make it possible for the solver to find a solution. The behavior is
as expected. The tilt is at the limit of large parts of the trajectory to compensate
for the excess amount of sealant applied on the outer sealant edge since ∥x∥ ≫ ∥y∥.
More tilt is needed to achieve an equal height distribution along x and y. The
parameter graphs are visualized in Figure 4.8.

Figure 4.8: Parameters for a smaller square path.

37

4. Results

4.1.5 Plate circle
The geometric approach ensures an equal height along x and y, but what happens
between the desired sealant edges is not considered. Therefore, a small seam between
a plate and a cylinder was tested to see if the solution is feasible even with some
geometric disturbances between x and y. The simulated sealant is illustrated in
Figure 4.9. This shows promising results for a small disturbance.

Figure 4.9: Simulated sealant for a small seam created by a cylinder

The parameter graphs are illustrated in Figure 4.10. It shows expected behavior
by having a constant tilt and u̇ > ẇ during the entire trajectory. All geometric
constraints are within the bounds.

Figure 4.10: Parameter plots for a small seam created by a cylinder.

38

4. Results

4.1.6 Plate cube
To analyze larger disturbances between x and y, a seam between a plate and a box
was created. The simulated sealant is portrayed in Figure 4.11, demonstrating good
results even when the geometric disturbance is high. If the curvature is too high,
the final time tf can be adjusted, but the idea of an equal height distribution along
x and y shows promising results.

Figure 4.11: Simulated sealant for a step created by a box on a plate.

The parameter graphs shown in Figure 4.12 demonstrate good results. Where the
tilt increase in the corner and u̇ > ẇ. All geometric constraints are within the
bounds.

Figure 4.12: Parameter plots for a step created by a box on a plate.

39

4. Results

4.1.7 Ledge
A ledge geometry was created to analyze the effect of κ. If κ is locked to zero,
the sealant geometry is showing good results, but the path is difficult for a robot
to execute. Figure 4.13a illustrates an optimized path for κ = 0. Figure 4.13b
shows the simulated sealant, including optimization of κ, maintaining acceptable
simulation results while making the path executable. In the corner, there is a slight
increase in the sealants width. This effect is described further in Section 4.1.8.

(a) Sealant geometry and TCP path
when κ = 0.

(b) Sealant geometry and TCP path
when κ is optimized.

Figure 4.13: Comparison of sealant and TCP path depending on optimization of
κ.

The parameter graphs are portrayed in Figure 4.14, showing expected results with
zero tilt, and no geometric constraints violated. While compensating with κ to keep
the trajectory executable.

Figure 4.14: Parameter plots for a ledge created by two plates.

40

4. Results

4.1.8 Stairs
To stress the freedom in drag, a stair geometry was created. Figure 4.15 shows the
sealant geometry from a side perspective, and Figure 4.15b illustrates the sealant
from a top perspective. From the side perspective, the effect of the curve smoothen-
ing described in Section 3.1.4 is seen. Where x and y can not follow the initial
desired sealant. The simulation is illustrated in Figure 4.15b, which introduces a
variation in width.

(a) Sealant geometry for a stair geom-
etry.

(b) Parameter plots for a stair geom-
etry.

Figure 4.15: Simulated sealant for steps created by a boxes on a plate.

The parameter graphs shown in Figure 4.16 demonstrate reasonable results, where κ
is oscillating when going over the corners, arc length velocities along the two sealant
edges are equal, and there is no tilt.

Figure 4.16: Parameter plots for a stair geometry.

41

4. Results

4.2 Surrogate Model
In this section, the results of the forward simulation are presented. Demonstrating
how well the glass-box model and the MLP-CNN architecture introduced in Section
3.2.4 perform on a validation set introducing unseen kinematics and geometries. The
convolutional neural network performance is compared to a linear glass-box model
to see if the depth in the MLP-CNN architecture extracts useful features.

4.2.1 Glass-box Model
Figure 4.17 illustrates the training and validation loss for the glass-box model. The
orange line corresponds to the validation loss, and the blue line shows the training
loss.

Figure 4.17: Training and validation loss for the glass box model for 500 epochs.

Figure 4.18 illustrates the evolution of the training in which a random cross section
was chosen for each epoch. The two most left images correspond to the prediction
and label of the validation set and the two images to the right correspond to the
training set. The images suggest that a linear model can learn simple features
regarding spatial and kinematic information.

42

4. Results

Figure 4.18: Training evolution for the glass box model for 500 epochs.

The pixel MSE for the 12 validation paths are illustrated in Figure 4.19. To validate
if a cross-section is feasible, a pixel MSE of 0.02 was set as a threshold, meaning that
the average pixel error is smaller than 15 %. This value was arbitrarily chosen and
is merely used to compare the data presented in the thesis. The validation had an
accuracy of 41.7 %. The red vertical lines correspond to each path. There is a trend
where the network performs better at the beginning of the path. An explanation is
that the start of the path has simpler geometries compared to the end of the path.

43

4. Results

Figure 4.19: MSE over validation paths.

4.2.2 MLP-CNN Network
Figure 4.20 illustrates the training and validation loss for the MLP-CNN model. The
blue line corresponds to the training loss, and the orange line shows the validation
loss. The validation loss is not overfitting to the data, indicating either that the
validation set is to close the training set or that the network learns meaningful
features. Since the TCP path is randomly generated, each path is unique, and
the model will perform well within the bounds presented in Table 3.1. A greater
variation in the bounds could be experimented with.

Figure 4.20: Training and validation loss for the MLP-CNN hybrid model for 500
epochs.

The training evolution is presented in Figure 4.21 to identify whether the network

44

4. Results

learns useful features or has collapsed to predict a generalized output that only
minimizes the training loss. The two most left images correspond to the prediction
and label of the validation set and the two images to the right show the training
set. The sample is chosen randomly for the epochs.

Figure 4.21: Training evolution for the CNN model for 500 epochs.

The pixel MSE for the 12 spatial validation paths are illustrated in Figure 4.22. The
red horizontal line shows the threshold for the MSE, and the red vertical lines show
the start and end of each validation path. The accuracy of a 0.02 MSE or better for
the validation set was 70.38%. As illustrated in Figure 4.22, the network generally
performs well at the beginning of the path but performs worse in the later stages,
where the red dotted lines separate the twelve paths. An explanation is that the start
of the path has geometries that are easier for the network to predict. For instance,
at the beginning of the validation set, the path moves over a slope leaning from
the right, which the network seems to handle well. While reaching more complex
geometries, such as the sphere, the network performs worse. Indicating that spatial
information has a high impact on network performance.

45

4. Results

Figure 4.22: MSE over validation paths for the validation set.

46

5
Discussion

The geometric approach is discussed in Section 5.1, while a discussion regarding the
surrogate model is presented in Section 5.2. The research questions introduced in
Section 1.3 is discussed in Section 5.3.

5.1 Geometric Approach
While the geometric approach showed promising results for a large set of curves, it
has some limitations related to the physical limitations of mechanical devices. Paths
with sharp corners, for example, are impossible to follow with high velocity. For the
same reason sharp changes in the desired sealant, as illustrated in Figure 5.1a, the
solver can not find a feasible solution. Bezier curves are applied to smooth the
curve. Figure 5.1b demonstrates the closest smoothing to the original curve while
maintaining a feasible solution.

(a) Desired sealant over a sharp right
angle.

(b) Closest Bezier curve that can yield
feasible curves.

Figure 5.1: Limit in curve smoothing.

Furthermore, curve smoothing introduces additional limitations. For instance, going
over an edge as described in Section 4.1.8, the width will not be constant. Due to
the curve smoothening, some points of the desired sealant edges are located outside,
and some will be located inside the substrate as illustrated in Figure 5.2.

47

5. Discussion

Figure 5.2: Effect of curve smoothening.

There will be a larger width when the desired sealant is located outside the substrate
and a smaller width when it is located inside the substrate, which is illustrated in
Figure 5.3.

Figure 5.3: Curve smoothening effect on sealant width going over edges.

Reducing the nozzle volume flow would slow down the entire process, allowing more
precise solutions in sharp corners like in Figure 5.3 and the stairs in Figure 4.15.

The constraints set due to executability in the TCP path limit some desired sealants.
For example, as described in Section 4.1.4, when one of the sealant edges is much
longer than the other, ∥x∥ ≫ ∥y∥. No feasible solution can be found without vio-
lating the tilt constraint. The same holds for the other constraints. The constraints
set limitations on what sealants are possible. Because of the constraint set on b and
c, the sealant has limitations in its width. If the desired sealant is too wide, the
distance to b and c will go out of bounds. If the desired sealant has a small height,
the line velocity bounds set on u̇, and ẇ will be exceeded.

The simplified model ensures equal height distribution along the sealants edges,
but what happens in between is not considered. The solver showed promising re-
sults for the seam created by the circle and box described in Sections 4.1.5, 4.1.6.
However, cases exist where the solution is not optimal. For instance, given a seam
along the geometry as illustrated in Figure 5.4. The TCP should be located so it
can spray into the seam to prevent air bubbles.

48

5. Discussion

Figure 5.4: TCP location to prevent air bubbles.

5.2 Surrogate model
The surrogate model showed promising results for varying kinematics. However,
for more complex geometries, an increased performance is required for the model
to be deployable. The model was trained on 25 different geometries. Adding more
geometries to the training data could help the network improve its performance.

In this project, CNN was chosen to be included in the network architecture be-
cause of its strength in image tasks. For instance, AlexNet [40] is commonly used
for image classification, You Only Look Once [41] for object detection, and U-Net
[42] for image segmentation. The sealing results does not only depend on the current
data points, but also on previous and later data. For increased performance this
could be introduced in the input to the network. By introducing sequential data
some recurrent neural network architecture could be considered. Some widely used
recurrent neural networks include Gated Recurrent Units [43] and Long Short Term
Memory [44].

While the glass-box model is able to learn some features to predict cross-section, the
MLP-CNN outperforms the glass-box model in both accuracy, training, and valida-
tion loss. Table 5.1 presents the training loss, validation loss, and accuracy for the
glass box model compared to the MLP-CNN.

Table 5.1: Comparison of network performance.

Network Training Loss Validation Loss Accuracy
Glass-box 0.019 0.027 41.7%
MLP-CNN 0.0083 0.016 70.4%

Given the network is trained on data that performs as expected, the surrogate model
could result in more reasonable results when the simulation acts unexpectedly, which
is illustrated in Figure 5.5. Where the sealant is going through the substrate, which
is a limitation in the simulation software, the surrogate model still predicts a rea-
sonable cross-section. The black geometry illustrates the simulated sealant and the
green geometry is the substrate.

49

5. Discussion

(a) Visualization of dataset point with error in simulation.

(b) Predicted cross section compared to faulty label.

Figure 5.5: Surrogate model predicts reasonable sealant for unexpected behavior
in the simulation software.

5.3 Research Question
The research questions investigated in the thesis are:

• How do the simulated sealants using a TCP path calculated by a
geometric approach compare to the desired sealant? As shown in Sec-
tion 4.1, the sealant calculated by the geometric approach is sufficient for a
large set of curves. However, the geometric approach does not consider dis-
continuities between the sealant edges, which introduce challenges for complex
geometries. Additionally, the geometric approach has some limitations related
to the physical limitations of mechanical devices, as illustrated in Figure 5.1.

• How do sealing simulation predictions made by the surrogate model

50

5. Discussion

compare to simulations performed in IPS IBOFlow? As shown in Sec-
tion 4.2.2, the sealing predictions made by the surrogate model showed promis-
ing results for further development. The model learns some useful features,
but further development is needed for the surrogate model to be useful within
an optimization formulation. The MSE over the validation path is shown in
Figure 4.22, where a significant decrease in performance is seen when the val-
idation geometry becomes more complex. The model can predict the shape
of the sealants cross-section, but determining the cross-section with pixel-wise
precision is challenging, as seen in predictions of the validation set in Figure
4.21.

• How do simple neural networks compare to deep neural networks
for sealing simulations? Comparison of Figure 4.17 and Figure 4.20 shows
that the CNN outperforms the glassbox model in prediction error, which is
visually illustrated by comparing Figure 4.18 and Figure 4.21.l.

5.4 Ethical and Sustainability Aspects
The project focuses on developing a framework that increases the efficiency of robot
trajectory generation. The project has no direct ethical or sustainable impacts, but
some indirect aspects are considered.

The thesis does not presents any obvious moral issues. Developing a framework
for robot trajectory generation with the intention of saving time and resources is
considered a neutral technical advancement. The primary concern is that robots
could replace human labor. However, the car industry does already use robots to
apply sealants, and the goal of the thesis is to do so more effectively, which is seen
as net positive.

The project does not have any clear environmental impact. However, the auto-
motive industry is pushing for sustainability, and any advancement contributing to
more efficient use of time could indirectly contribute to sustainability. However, it
is valuable to acknowledge that saved time and resources are not guaranteed to be
allocated toward ethical or sustainability initiatives.

51

5. Discussion

52

6
Conclusion

Given two curves that define the edges of a desired sealing bead and certain process
parameters, an initial trajectory was calculated using a direct geometric approach
to maintain an equal sealant height distribution along the two sealant edges. Test
cases that included curves with varying widths that turned and went over corners
validated the geometric approach. Additionally, the solution was tested on geome-
tries introducing cavities between the edges of the sealant. The initial trajectory
was proven effective for a large set of curves. However, the solution has limitations,
especially when navigating corners or when the desired sealant turns drastically.

To account for these limitations, a surrogate model was developed to capture more
complex behaviors of the sealant while maintaining the speed of validation. The sur-
rogate model showed improved cross-section prediction compared to the glass box
model when validated against two validation sets. One introduces kinematic vari-
ation, and the other incorporates spatial variation. The surrogate model exhibited
promising results on unseen kinematic data but struggled with complex geometries.
Introducing more variations of geometries in the training set could result in better
performance but requires a larger volume of data. An alternative network architec-
ture could be considered, for instance, a recurrent network to encapsulate the time
sequence of the dataset.

In conclusion, two essential blocks for automatic path planning for sealing appli-
cations have been developed. The geometric approach was proven efficient for a
large set of curves, while the surrogate model showed promising results for further
development.

53

6. Conclusion

54

Bibliography

[1] Fraunhofer-Chalmers Centre and Industrial Path Solutions AB. IPS - Industrial
Path Solutions, 2025. Available at: https://www.industrialpathsolutions.
com and https://www.fcc.chalmers.se/software/ips/.

[2] Andreas Mark, Robert Bohlin, Daniel Segerdahl, Fredrik Edelvik, and Johan S
Carlson. Optimisation of robotised sealing stations in paint shops by process
simulation and automatic path planning. International Journal of Manufactur-
ing Research 5, 9(1):4–26, 2014.

[3] Daniel Gleeson, Stefan Jakobsson, Raad Salman, Fredrik Ekstedt, Niklas Sand-
gren, Fredrik Edelvik, Johan S. Carlson, and Bengt Lennartson. Generating
optimized trajectories for robotic spray painting. IEEE Transactions on Au-
tomation Science and Engineering, 19(3):1380–1391, 2022.

[4] Saul Nieto Bastida and Chyi-Yeu Lin. Autonomous trajectory planning for
spray painting on complex surfaces based on a point cloud model. Sensors,
23(24):9634, 2023.

[5] Julian R. Diaz Posada, Alexander Meissner, Gauthier Hentz, and Nikolai
D’Agostino. Machine learning approaches for offline-programming optimization
in robotic painting. In ISR 2020; 52th International Symposium on Robotics,
pages 1–7, 2020.

[6] Wenfeng Zhu, Jie Wang, and Peijian Lin. Numerical analysis and optimal design
for new automotive door sealing with variable cross-section. Finite Elements
in Analysis and Design, 91:115–126, 2014.

[7] Nathan D Ratliff, Jan Issac, Daniel Kappler, Stan Birchfield, and Dieter Fox.
Riemannian motion policies. arXiv preprint arXiv:1801.02854, 2018.

[8] Peng Zhou, Pai Zheng, Jiaming Qi, Chengxi Li, Anqing Duan, Maggie Xu,
Victor Wu, and David Navarro-Alarcon. Neural reactive path planning with
riemannian motion policies for robotic silicone sealing. Robotics and Computer-
Integrated Manufacturing, 81:102518, 2023.

[9] Franco Rocha Pereira, Caio Dimitrov Rodrigues, Hugo da Silva e Souza, José
Oliveira Cruz Neto, Matheus Chiaramonte Rocha, Gustavo Franco Barbosa,
Sidney Bruce Shiki, and Roberto Santos Inoue. Force and vision-based system
for robotic sealing monitoring. The International Journal of Advanced Manu-
facturing Technology, 126(1):391–403, 2023.

[10] Perla Maiolino, Richard Woolley, David Branson, Panorios Benardos, Atanas
Popov, and Svetan Ratchev. Flexible robot sealant dispensing cell using rgb-d
sensor and off-line programming. Robotics and Computer-Integrated Manufac-
turing, 48:188–195, 2017.

55

https://www.industrialpathsolutions.com
https://www.industrialpathsolutions.com
https://www.fcc.chalmers.se/software/ips/

Bibliography

[11] ABB Robotics. RobotStudio, 2024. https://new.abb.com/products/
robotics/robotstudio.

[12] Enric Galceran and Marc Carreras. A survey on coverage path planning for
robotics. Robotics and Autonomous systems, 61(12):1258–1276, 2013.

[13] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen
Koltun, and Davide Scaramuzza. Learning high-speed flight in the wild. Science
Robotics, 6(59):eabg5810, 2021.

[14] W Keith Hastings. Monte carlo sampling methods using markov chains and
their applications. 1970.

[15] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.
[16] Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Traces and

emergence of nonlinear programming, pages 247–258. Springer, 2013.
[17] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep

learning, volume 1. MIT press Cambridge, 2016.
[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[19] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[20] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[21] George Philipp, Dawn Song, and Jaime G Carbonell. The exploding gradi-
ent problem demystified-definition, prevalence, impact, origin, tradeoffs, and
solutions. arXiv preprint arXiv:1712.05577, 2017.

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International confer-
ence on machine learning, pages 448–456. pmlr, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[24] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 315–323. JMLR Workshop and Conference
Proceedings, 2011.

[25] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3.
Atlanta, GA, 2013.

[26] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256. JMLR Workshop
and Conference Proceedings, 2010.

[27] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
7132–7141, 2018.

56

https://new.abb.com/products/robotics/robotstudio
https://new.abb.com/products/robotics/robotstudio

Bibliography

[28] Henk Kaarle Versteeg. An introduction to computational fluid dynamics the
finite volume method, 2/E. Pearson Education India, 2007.

[29] Cyril W Hirt and Billy D Nichols. Volume of fluid (vof) method for the dynamics
of free boundaries. Journal of computational physics, 39(1):201–225, 1981.

[30] Andreas Mark, Robert Rundqvist, and Fredrik Edelvik. Comparison between
different immersed boundary conditions for simulation of complex fluid flows.
Fluid dynamics & materials processing, 7(3):241–258, 2011.

[31] Charles S Peskin. Numerical analysis of blood flow in the heart. Journal of
computational physics, 25(3):220–252, 1977.

[32] Stephen B Pope. Turbulent flows. Measurement Science and Technology,
12(11):2020–2021, 2001.

[33] Robert Byron Bird, Robert Calvin Armstrong, and Ole Hassager. Dynamics of
polymeric liquids. vol. 1: Fluid mechanics. 1987.

[34] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for sci-
entific computing in python. Nature methods, 17(3):261–272, 2020.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems, 32:8026–8037, 2019.

[36] TorchVision maintainers and contributors. Torchvision: Pytorch’s computer
vision library. https://github.com/pytorch/vision, 2016.

[37] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[39] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin
Recht. The marginal value of adaptive gradient methods in machine learning.
Advances in neural information processing systems, 30, 2017.

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241.
Springer, 2015.

[43] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. On the properties of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259, 2014.

[44] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

57

https://github.com/pytorch/vision

Bibliography

58

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Background
	Related work
	Research Question
	Research Objectives
	Limitations

	Theory
	Constrained continuous non-linear optimization problem
	Neural Networks
	Fully Connected Linear Layer
	Backpropagation
	Activation Function
	Batch Normalization
	Convolutional Neural Network (CNN)
	Residual block
	Squeeze and Excitation block

	IBOFlow Sealing Module

	Methodology
	Geometric Approach
	Problem description
	Derivation of Equations for Optimization
	Problem Setup
	Sealant Modeling
	Calculate TCP

	Optimization formulation
	Variable space
	Inequality constraints
	Equality constraints
	Bounds
	Initial guess
	Objective

	Evaluation metric

	Surrogate Model
	Problem description
	Data Collection
	Dataset
	Network architecture
	Linear Glass-Box Model
	MLP-CNN Network

	Training Process
	Evaluation Metric

	Results
	Geometric Approach
	Different widths
	Zic-Zac
	Large square
	Small square
	Plate circle
	Plate cube
	Ledge
	Stairs

	Surrogate Model
	Glass-box Model
	MLP-CNN Network

	Discussion
	Geometric Approach
	Surrogate model
	Research Question
	Ethical and Sustainability Aspects

	Conclusion

