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Intersection-free load balancing for industrial robots
Modelling and algorithm development
Edvin Åblad
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis considers the problem of minimizing cycle time while avoiding collisions
within a robot station consisting of multiple industrial robots that collectively should
cover a set of tasks, e.g. welding operations, on a workpiece. The cycle time is the
time required to perform all tasks. Nowadays, in order to prevent the robots from
colliding, their programs usually synchronise by adding synchronisation/interlocking
signals when necessary. Here, the aim is instead to partition the space within the
station, separating the robots. There are three main advantages in this approach:
-the simplicity of the robot programs due to the total absence of synchronisation
need; -the stability of the station in case of unexpected events; -lower maintenance
cost. The problem is thus to find a space partition allowing all tasks to be performed
in a minimal time. In order to retrieve the space partition, an approximate problem
is repeatedly solved using the Dantzig-Wolfe decomposition principle and from the
solutions provided, generalised Voronoi diagrams are approximated. For each of
the resulting candidate partitions the robot module in the software IPS is used to
determine the robot station cycle time. Results on existing industrial test cases show
that using this approach the cycle time was increased by around 5% as compared
with synchronising the robot programs. It is however not determined whether this
approach finds an optimal partitioning since the generalised Voronoi diagram is
generated from some stationary position of the robots, which might cause non-
optimal paths between these positions.

Keywords: column generation, Dantzig-Wolfe decomposition, generalised Voronoi
diagram, satisfiability problem, space partitioning of robot programs.
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1
Introduction

1.1 Background

Fraunhofer-Chalmers Centre is a research centre, located at the Johanneberg Science
Park, focusing on modelling, simulation and optimization of products and processes
with the aim to boost technical development, improve efficiency and cut costs for
several industrial areas: among these, an important sector is the automotive indus-
try, where its manufacturing process is of special interest (see [1]).

The manufacturing process of vehicles is a complex process composed by many
steps and advanced components. One of the final steps in the process is the steel
metal sheet assembly. Here, often a workpiece, as a car body, is handled by several
robots operating in the same workstation. Robots can perform welding tasks on
specific points of the workpiece, they can seal, or measure predefined objects’ areas,
using laser or other techniques.

Optimizing the throughput of such stations is crucial not only to meet the de-
mands of the automotive market but also to ensure both the economical and the
ecological sustainability of the production; in fact, the system becomes more efficient
in terms of energy and space, see [2].

1.2 Motivation

Industrial robots’ motions are programmed to avoid collisions with the environment.
Synchronisation messages, exchanged between the robots and a programmable logic
controller (PLC), are added to the programs, in order to avoid collisions also among
the robots (see [3]). This additional step decreases the station’s flexibility, since the
synchronisations are integrated into the robot programs: changing a program would
often require checking whether the synchronisation scheme is still valid. Maintenance
costs are also increased, due to the longer times needed for replacing a malfunction-
ing robot and for moving the robots home in a safe way after a sudden production
stop (see [4]). Motivated by the above observations, this thesis work will consider
the possibility to decrease the complexity of the robot programs while keeping cycle
time under an acceptable threshold value. The objective is to generate collision-free
robot programs that perform all the specified tasks on the workpiece, minimizes
cycle time, and under the constraint that the volumes swept along the robots’ paths
do not intersect.

1



1. Introduction

1.3 Previous work
Much of the previous work on the problem addressed in this work relies on the
fact that if the issue of colliding robots is initially disregarded, the problem can be
modelled as a min-max generalised multiple travelling salesperson problem (min-max
GMTSP) or as an uncapacitated min–max Generalised Vehicle Routing Problem.
In a min-max GMTSP, multiple agents collectively cover all the clusters in a graph
while minimising the length of the longest tour; it generalises the multiple travelling
salesperson problem (MTSP) since the agents may have different starting nodes
and since the nodes are grouped into clusters and it is enough to visit one node in
each cluster. The collision handing is typically done in a post-processing step, in
which the robot programmes are synchronised; see [5, 3, 6]. For an overview of the
travelling salesperson problem; see [7, Ch. 1].

1.4 Limitations
Since the algorithm developed to generate the collisions-free robot programs contains
many components, many of which are part of existing software, the mathematical
theory behind these components are not presented in this work but only referred
to. However, for the two main parts of the algorithm to which this thesis work
contributes the most: (i) the solution of the min-max semi-assignment problem with
a conflict constraint, and (ii) the generalised Voronoi diagram, some mathematical
background and alternative solution methods are presented and tested.

1.5 Problem introduction
Figure 1.1 illustrates a robot station. In this particular station, four robots collec-
tively need to perform 48 stud weld tasks on the car body; a stud weld is technique

Figure 1.1: A snapshot from IPS illustrating four robots in a robot station, a car
body (that is the workpiece), and 48 stud weld tasks on the workpiece. A close up
of a robot is shown in Figure 1.2a and a close up of a task is shown in Figure 1.2b.
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1. Introduction

to fasten a nut. The typical goal is to minimise the station’s cycle time or makespan,
i.e., the time of the longest robot cycle, which is equivalent to maximising the sta-
tion’s throughput, i.e. the rate of production [8, p. 570]. Figure 1.1 is a snapshot
from the software Industrial Path Solutions (IPS), which offers sequencing and path
planning in a robot station; see Section 4.1.2 for more details.

In Figure 1.2a, the geometry of a robot is visualised. This robot is a typical
industrial robot with six joints: rotation around the base plate, backward & forward
tilting at the base plate, lowering and raising arm, rotating arm, lowering and raising
the tool, and rotating the tool. This type of robot is considered throughout the thesis
but the algorithm developed may be extended to handle other types of robots.

(a) A robot positioned near the car
body.

(b) A robot positioned at a task.

Figure 1.2: Illustrations of details in the robot station shown in Figure 1.1. In
order to emphasise the robot and the tasks, the surrounding geometry as well as the
car body (Figure 1.2b) are not rendered.

Figure 1.2b illustrates a close-up on a cluster of stud weld tasks. Note that a stud
weld can be performed with any rotation in the plane where the stud is to be placed;
this is reflected in the Figure where the tool centre point (TCP) aligns in the plane
(blue line) but with a rotation (red and green lines). Note that there are other types
of tasks: restrictive tasks where the TCP needs a specific rotation and general tasks
where the TCP follows a path when performing the task. Therefore, throughout
this thesis, we assume that there are several alternative robot configurations that
can be used to perform each task. Hence, any type of task that is performed using
a stationary robot position is considered.

As mentioned in Section 1.2, the problem to solve in such a station is to assign
every task to a robot, order the tasks in a sequence, and find a path through this
sequence (in the right order). In Figure 1.3a illustrates a shortest path between
two tasks; the robot must keep a certain clearance to the car body to guarantee
a collision free path. This clearance is often a sum of many contributions: the
uncertainties in the geometry of the car body, the inaccuracy of the robot’s motion,
and of other process specific requirements.

In Figure 1.3b, the issue of a robot-robot collision is visualised, i.e., there is no
guarantee that the robots will not collide during this robot program since a robot-
robot clearance limit is not met. Planning all the robots’ moves simultaneously to
find collision-free motions would resolve this issue. Anyway, in IPS this approach is

3



1. Introduction

(a) A collision free path, where the
robot is sampled several times to illus-
trate the motion along the path.

(b) A robot-robot collision, where the
shortest distance between the robots is
4cm and marked by a cyan thick line.

Figure 1.3: Illustrate the robot’s motion along paths between tasks, where the
path is marked by a blue curve denoting the position of the robot TCP along the
path. The paths guarantee a certain clearance to any static geometry but not to
other robot objects.

not adopted since the complexity of such algorithms grows exponentially with the
number of robots and that would be prohibitive. Several decoupled strategies have
been devised to cope with this problem (see [6]) and currently IPS handles this issue
by synchronising the robots using coordination signals in the robot programs.

In order to remove the need for synchronisation between robots the additional
constraint—that the volumes swept along the robots’ paths pass the desired clear-
ance check— is added. Note that is equivalent with Definition 1.5.1. This equiva-
lence can be established by two facts: (i) given such a partition, the constraint is
trivially satisfied, (ii) the existence of one such partition is provided by the gener-
alised Voronoi diagram, introduced in Section 2.7. This constraint is later called the
robot-partitioning constraint or simply the partitioning constraint.

Definition 1.5.1 (robot-partitioning constraint). This constraint is satisfied if
the space can be partitioned into subsets, one for each robot, such that the swept
volume of each robot is strictly contained in the corresponding subset with half the
robot-robot clearance to the subset boundary.

Having defined the robot-partitioning constraint we are now able to define the
complete problem, the goal of this thesis is thus to construct an algorithm that
provides good solutions to this problem. However, before presenting the model and
the algorithm in Section 3 some mathematical tools will be introduced, in Section
2.

Definition 1.5.2 (complete problem). Generate robot programs with minimal

4



1. Introduction

the cycle time, performs all tasks, has a clearance to the environment, and satisfies
the robot-partitioning constraint (recall Definition 1.5.1).

5
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2
Mathematical and computational

tools

We next present some key concepts. The algorithm in Section 3 considers an integer
linear program with constraints in conjunctive normal form; see Section 2.1. Solving
this integer linear program involves column generation—see Section 2.2— used in a
Dantzig-Wolfe decomposition (see Section 2.3) and a branch-and-price procedure to
find integral solutions (see Section 2.4). The algorithm also involves a partitioning
of the robots using an approximation of the generalised Voronoi diagram (Sections
2.5 & 2.7). In an attempt to improve the approximation, a Delaunay tessellation
is used; see Section 2.6. A final component of the algorithm requires a solution to
a GTSP, in addition the cost of the edges in this problem is costly to compute, to
solve this problem the software IPS is used; see Section 2.8.

2.1 Conjunctive normal form
For a collection of Boolean variables (or constants) with members ak where k =
1, . . . , n for some n. Let Cij be an atomic formula, i.e. either ak or ¬ak for some
k determined by i and j. An expression is said to be in conjunctive normal form
(CNF) if it is on the form ∧

i

∨
j

Cij (2.1)

and ∧ is the and operator, known as a conjunction, and ∨ is the or operator, known
as a disjunction. This form may seem restrictive but in fact every propositional
formula can be converted to a CNF expression; see [9]. Here, we will discuss two
logical expressions that will be of later use.
xor(a, b) denotes the exclusive or function and returns true when either a or b but

not both are true. Hence, we have the equivalent expressions

(a ∨ b) ∧ ¬(a ∧ b)⇔ (a ∨ b) ∧ (¬a ∨ ¬b), (2.2)

where the right expression is in CNF and the equivalence is established by De
Morgan’s laws (see [10]).

n-xor(a1, a2, . . . , an) is an extension of the xor function, which returns true when
exactly one ai is true. A CNF expression for this is(

n∨
i=1

ai

)
∧

 ∧
1≥i<n

∧
i<j≥n

(¬ai ∨ ¬aj)
 , (2.3)

7



2. Mathematical and computational tools

where the first disjunction expresses that at least one ai is true and the remain-
ing disjunctions expresses that at most one ai is true. Note that the number
of terms in (2.3) equals 1 + 1

2n(n− 1).

2.2 Column generation
Here, we follow the procedure in [11, Ch. 3.3]. Suppose we have the general linear
programming (LP) problem

minimise
x

cTx, (2.4a)

s.t. Ax = b, (2.4b)
x ≥ 0. (2.4c)

where the number n of variables (i.e., x ∈ Rn) is huge. Considering all of them
might be hard. Instead, we consider only a subset of p variables, denoted by tilde,
as x̃ ∈ Rp. Given an optimal solution x̃∗ to the corresponding restricted problem

minimise
x̃

c̃Tx̃, (2.5a)

s.t. Ãx̃ = b̃, (2.5b)
x̃ ≥ 0, (2.5c)

where tilde denote the corresponding subset of A, b and c, two questions are rele-
vant:

• Is the solution x̃∗ optimal in the original problem (2.4)?

• If not, which variables can be included in the subset to improve the solution?

These questions are related to the simplex algorithm, which is a general algorithm
for solving LP problems; see [12, Ch. 4]. The simplex algorithm is based on the fact
that an optimal solution to problem (2.4) will be in an extreme point of (2.4b). One
way to express these extreme points x, is to first solve

xB = B−1b, (2.6)

where B is a matrix of m linearly independent columns of A and m is the number
of rows of A. The extreme point x has the values of xB on indexes corresponding to
the selected columns of A and is zero otherwise. Let cB be a vector with elements
of c corresponding to the vector xB. With these we may express the row vector
of simplex multipliers πππ = cT

BB−1, which are also called LP dual variables. The
simplex algorithm then uses the concept of reduced cost

c̄ := c−ATπππ, (2.7)

which is the marginal gain of using others columns of A. Hence, for an element i
with negative c̄i the solution will improve by switching to an extreme point that

8



2. Mathematical and computational tools

use the i-th column of A. Note that for all already selected columns of A, the
corresponding element c̄i is zero.

Using the reduced cost, we may return to the two above questions. First assume
that an optimal solution x̃∗ to the restricted problem (2.5) is found and denote
the corresponding multipliers by π̄ππ. If all reduced costs (2.7) are positive, then the
solution x̃∗ is optimal to the complete problem. Otherwise, the idea behind column
generation, is to introduce one or several such variables (columns) with negative
reduced cost into the restricted problem and continue iteratively by checking for
optimality.

Consider a slightly different problem, where the constraints (2.4b) are relaxed to
Ax ≤ b. By adding slack variables s, we regain a problem on the form (2.4), where
the constraint matrix A is replaced by [A I]. After the introduction of the slack
variables, the expression (2.7) for the reduced costs still holds. Now by including
all slack variables in the restricted problem (2.5) there is no need to compute the
reduced cost for the slack variables.

The procedure, of finding the column corresponding to the lowest reduced cost,
and introducing it in the subset, also provides bounds on the optimal value, which
can be used in a termination criterion. The upper bound is trivial, i.e. the value of
an optimal solution to the restricted problem will always be equal to or higher than
that of the solution to the problem containing all columns. The lower bound, as
mentioned by [13], can be computed when an upper bound, κ, to the column sum
1Tx is given for any x feasible in (2.4). Then [13] states that the solution cannot
improve more than κ times the smallest reduced cost. Summarising, the bounds on
the optimal value z∗ in terms of the optimal value to the restricted problem, i.e. z̄,
and the smallest reduced cost, c̄∗, is given by

z̄ + κc̄∗ ≤ z∗ ≤ z̄. (2.8)

2.3 Dantzig-Wolfe decomposition
This Section follows the procedure in [14, pp. 319–320], which is a special case of the
so-called Dantzig-Wolfe decomposition. A more general treatment is found in [11,
Ch. 3]. Consider an optimisation problem of the following form, where A denotes
an m× n matrix:

minimise
x

c(x), (2.9a)

s.t. Ax = b, (2.9b)
x ∈ S, (2.9c)
x integer. (2.9d)

Note that the function c(x) is not necessarily linear nor convex, although it simplifies
the problem greatly, since in this method the problem (2.9a), (2.9c), & (2.9d) needs
to be solved. In this thesis, S is assumed to be a convex and bounded polyhedron;
for the unbounded case, see e.g. [15]. By using this assumption, the set

S∗ = {x ∈ S : x integer} (2.10)

9



2. Mathematical and computational tools

is a finite set of vectors, {x1, . . . ,xM}. Hence, any point in S∗ may be expressed as

x =
M∑
j=1

λjxj, such that
M∑
j=1

λj = 1 and λj ∈ {0, 1}. (2.11)

By inserting (2.11) into (2.9) the following column generation form of (2.9):

minimise
λj

M∑
j=1

c(xj)λj, (2.12a)

s.t.
M∑
j=1

Axjλj = b, (2.12b)

M∑
j=1
λj = 1, (2.12c)

λj ∈ {0, 1}, j = 1, . . . ,M. (2.12d)

Note that cj := c(xj) and pj := (Axj) are constants in this new equivalent formu-
lation and that λj are variables.

Note that the possibly non-linear integer optimisation problem (2.9) has been
transformed into the integer linear programming (ILP) problem (2.12), here referred
to as the integer master problem (IMP). However, since the set S∗ is in general very
large, the number M of variables in (2.12) is also very large. By relaxing the
integrality on λλλ (the constraint (2.12d)) to λj ∈ [0, 1], we retrieve the so-called
master problem (MP):

minimise
λj

M∑
j=1

c(xj)λj, (2.13a)

s.t. (2.12b) and (2.12c) hold, (2.13b)
λj ∈ [0, 1], j = 1, . . . ,M. (2.13c)

As noted in Section (2.2) we can solve this problem using the column generation
principle, i.e., only considering a subset of S∗ in (2.12) (then represented by a subset
of the set {1, . . . ,M}): this is called the restricted master problem (RMP). Given
an optimal solution to the RMP with the LP dual optimal variable values π̄ππ and
q̄ corresponding to the constraints (2.12b) and (2.12c), respectively. This yield,
according to (2.7), the reduced cost of a point in the set S∗, which in this case
becomes,

c̄j = c(xj)− π̄ππTAxj − q̄. (2.14)

Hence, if we find a solution to the problem to

minimise
x∈S∗

c(x)− π̄ππTAx− q̄, (2.15)

with a negative objective value, introducing the corresponding column in the RMP
will improve its objective value. Otherwise —if the optimal objective value of (2.15)
is non-negative— the solution to the RMP also solves the MP. Note that since π̄ππ

10



2. Mathematical and computational tools

and q̄ are optimal LP dual variables to the RMP, every column in the RMP has
non-negative reduced cost.

This procedure is a decomposition procedure, since, if S and c can be separated,
then the subproblem will separate into smaller subproblems. To be more precise, if
the set S can be expressed as S = ∏

1≤i≤k Si, where S∗i = {x ∈ Si : x integer} with
elements xi1, . . . ,xiMi , and c may be decomposed, i.e.

c(xj) =
k∑
i=1

c(xij), for any xj =
k∑
i=1

xij, xij ∈ S∗i , (2.16)

which holds, e.g., if c is linear. Then the problem may be decomposed using the
relations in (2.16) and representing the points in Si using the convexity formulation
(recall eq. (2.11)) the model (2.12) becomes

minimise
λij

k∑
i=1

Mi∑
j=1

(
c(xij)

)
λij, (2.17a)

s.t.
k∑
i=1

Mi∑
j=1

(
Axij

)
λij = b, (2.17b)

Mi∑
j=1
λij = 1, i = 1, . . . , k, (2.17c)

λij ∈ {0, 1}, j = 1, . . . ,Mi, i = 1, . . . , k. (2.17d)

The model (2.17) is also an ILP problem. Hence, if the sets S∗i are too large then
we may again use the column generation principle by relaxing the integrality on λij.
Using the relation (2.16) and noting that the coefficients of the reduced cost (2.7)
for λij are only dependent on members of S∗i , the subproblem of finding negative
reduced cost decomposes over the sets S∗i , and can be expressed as to

minimise
x∈S∗

i

c(x)− π̄ππTAx− q̄i. (2.18)

A natural question that arises: if this procedure still requires a continuous re-
laxation of the convexity variables λj, then we still need to do some procedure to
retrieve the integral solution; why not simply relax the integrality on x in the origi-
nal problem (2.9)? The answer is that the lower bounds received from the MP is no
worse (but possibly better) than the bounds obtained by a linear relaxation of the
original problem. Moreover, it is the same bound as retrieved from a Lagrangian
relaxation with respect to the constraints (2.9b); see [16].

Deriving a lower bound for the MP is a simple task —recall that the lower bound
in the general column generation situation is given by (2.8) and that the column
sum is bounded by the convexity constraint— the bounds become

z∗ ≥ z̄ + c̄∗ (2.19)

for the undecomposed case. For the decomposed case this become

z∗ ≥ z̄ +
k∑
i=1

c̄∗i , (2.20)

11
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since the cost function c decompose according to (2.16). Note that these bounds
hold true also for the inequality constraints in (2.9b).

The careful reader might have noticed that in order to compute π̄ππ and q̄ in the
RMP, it must contain at least one column and, for the optimal dual objective to be
finite, the column must be a feasible solution to the MP. This initial column may be
found using a phase 1 of the simplex algorithm (see [12, Ch. 4.9]) or some problem
specific heuristic that is able to determine whether the problem is infeasible.

It remains to satisfy the integrality condition in the IMP (2.12). In order to
satisfy this condition a branch-and-price procedure is employed, as presented below.

2.4 Branch-and-price

For the purpose of this work, it is sufficient to branch only on the original variables
(i.e., x). This type of branching and more advanced branchings are explained in
[17]. The procedure works as follows: when the MP (2.13) is solved, the values
of the original variables x are computed from the optimal values of the convexity
variables λ∗j , using (2.11). If the value of some element in x is fractional, then the
branching rule is applied. What branching rule to use depends on the problem at
hand but generally we partition Rn into B and Bc, then two branches are created
by restricting the set S∗ to be either S∗ ∩ B or S∗ ∩ Bc; hence, the RMP remains
unchanged but the subproblem(s) will be minimised over these new sets. As noted
in [18] this is a preferable approach if the subproblem(s) remain tractable.

In each node of the branching, the solution of the MP does not need to be started
from scratch, since earlier nodes might have generated good columns. Hence, the
concept of a column pool is introduced, and in each node it is checked which columns
in the pool are feasible under the current branching rule. Any columns found during
this procedure is added to the pool. There is a risk for the column pool to grow too
large and thus several approaches have been developed for deleting columns from the
pool: the simplest of these might be that if the pool becomes too large all columns
are deleted before the column generation begins, due to time constraint this simple
rule was implemented; for better rules see [14].

A node is cut off from the tree if either the branching rule allows no feasible
solution to the problem (2.9), or the lower bound from the MP under the branching
rule exceeds the value of the best integer solution found so far.

Whenever the solution to the MP happens to be fractional in a node, and the
node is not cut off from the tree, the branching rule is applied. An example of the
branch-and-price procedure is illustrated in Figure 2.1. The details of the branching
rule will be discussed in Section 3.3.7.

2.5 Voronoi diagram

Here the concept of Voronoi diagram is introduced with the purpose of defining the
generalised Voronoi diagram, which in the case of a robot station can be informally
described as the surface that separates all robots and is everywhere equidistant to

12
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1
32 ≤ 40

S∗

2
33 ≤ 40

3
35 ≤ 35

Integer
solution found

4
36 ≤ 35

Lb ≥ Ub

5
34 ≤ 35

6
37 ≤ 35

Lb ≥ Ub

7
35 ≤ 35

Lb ≥ Ub

S∗ ∩B1S∗ ∩Bc
1

S∗ ∩B1 ∩B2S∗ ∩B1 ∩Bc
2S∗ ∩Bc

1 ∩B3S∗ ∩Bc
1 ∩B

c
3

Figure 2.1: Example of a branch-and-price tree, where in each node the MP is
solved for the set indicated above the node. The Lb ≤ Ub given in each node
denotes the value of the solution found to the MP and that of the best integer
solution found; the number above this denotes the order in which the nodes are
visited.

the two closest robots. This Section contains mainly a selection of the work done in
[19], which is also recommended for further details.

The concept of Voronoi diagram is ancient, due to its frequent occurrence in
nature, and there are very early publications, e.g. [20] from 1644, where it is used
to describe distribution of matter in the solar system.

The ordinary Voronoi diagram is defined for a set, P , of distinct points in Rm;
these are often called generator points since they generate a Voronoi cell. The
Voronoi cell generated by a point in P is a subset of Rm, which in the Euclidean
distance measure is closer to the generator point than to any other point in the set
P . A more precise definition is given next.

Definition 2.5.1 (Voronoi diagram in Rm [19, p. 45]). Let P = {p1, . . . ,pn} ⊂
Rm be a finite set of distinct points. The set

V (pi) := {x ∈ Rm : ‖x− pi‖ ≤ ‖x− pj‖, j ∈ {1, . . . , n}} (2.21)

is called the m-dimensional Voronoi cell generated by pi, the plane shared by two
Voronoi cells is called a Voronoi face, and the extreme points of a Voronoi cell are
called Voronoi vertices. The set of all Voronoi cells V(P ) = {V (p1), . . . , V (pn)}, is
called the m-dimensional Voronoi diagram generated by P .

An alternative to (2.21) is to use the concept of half-spaces (denoted H), which
emphasise the linearity of the faces in the Voronoi diagram, according to

V (pi) =
⋂
∈P\{i}

H(pi,pj), H(pi,pj) := {x ∈ Rm : ‖x− pi‖ ≤ ‖x− pj‖} . (2.22)

The half-space H(pi,pj), can be explicitly expressed in terms of scalar products
rather than norms as nij · x ≥ bij, where nij := pi − pj denotes the normal of the
half-space, and bij := 1

2(pi − pj) · (pi + pj) denotes its level.

13



2. Mathematical and computational tools

(a) A non-degenerate Voronoi di-
agram.

(b) A degenerate Voronoi dia-
gram.

Figure 2.2: Two examples of planar (m = 2) Voronoi diagrams generated by
six points. Note the interpretation of (2.22); each cell is the intersection of every
half-space generated by the cell generator point together with any other generator
point.

An example of a Voronoi diagram in the plane is presented in Figure 2.2a.
An important property of the Voronoi diagram is that it is unique by construc-

tion; see Property 2.5.1. This is good to keep in mind when the dual of the Voronoi
diagram, the Delaunay tessellation, is introduced in Section 2.6.

Property 2.5.1 (Uniqueness of Voronoi diagram [19, p. 58]). Given P =
{p1, . . . ,pn} ⊂ Rm of distinct points. Let V (pi) be given by (2.21), which is a
non-empty, convex m-dimensional polyhedron. V(P ) is a unique tessellation of Rm,
since it covers Rm (2.23a) and contains no overlaps (2.23b).

n⋃
i=1

V (pi) = Rm, (2.23a)

{V (pi) \ ∂V (pi)} ∩ V (pj) = ∅, i ∈ {1, . . . , n} \ {j}, j ∈ {1, . . . , n}, (2.23b)

where ∂ denote the set boundary operator.

Another important and related property is whether the Voronoi diagram is non-
degenerate, which is of importance for the uniqueness of the Delaunay tessellation.

Definition 2.5.2 (Non-degenerate Voronoi diagram [21, p. 2]). An m-dim-
ensional Voronoi diagram is called non-degenerate if each Voronoi vertex is contained
in exactly m+ 1 Voronoi cells.

An example of a degenerate Voronoi diagram is shown in Figure 2.2b, where the
computed Voronoi cells reveal that one Voronoi vertex is contain in more than three
cells.

2.6 Delaunay tessellation
In the algorithm suggested, in Section 3.4.3, which assigns a specific volume of the
station to each robot, the Voronoi diagram is central. The Delaunay tessellation is
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only used in a suggested improvement of the algorithm; thus this Section is optional
for understanding.

Them-dimensional Delaunay tessellation1 of a point set P = {p1, . . . ,pn} ⊂ Rm,
is a set of simplices with vertices in P , covering the convex hull of P , and having no
overlapping members. See Figure 2.3a for examples in two dimensions. We next use
the Voronoi diagram to define the Delaunay tessellation, and will use this definition
to prove the empty circum-hypersphere property (which is sometimes used to define
the Delaunay tessellation [21, p. 1]).

Definition 2.6.1 (m-dimensional Delaunay tessellation [19, p. 56]). Let

• P := {p1, . . . ,pn} ⊂ Rm be a set of unique points,

• V(P ) denote its Voronoi diagram,

• T := conv(P ) possess non-zero volume,

• Q := {q1, . . . ,ql} denote the set of Voronoi vertices in V(P ),

• Pi := {pi1, . . . ,piki
} denote the set of generator points of Voronoi cells con-

taining Voronoi vertex qi,

• Ti := conv(Pi), and

• D(P ) := {T1, . . . , Tl}.

If ki = m + 1 for all i ∈ {1, . . . , l} then D(P ) consists of l m-dimensional simplices
and it is the m-dimensional Delaunay tessellation of T , which spans the set P .

If there exists an i ∈ {1, . . . , l} such that ki ≥ m+ 2, then we call the set D(P )
them-dimensional Delaunay pretessellation of T , which spans P . The Delaunay tes-
sellation, consisting of m-dimensional simplices, is retrieved from the pretessellation
by partitioning each Ti, for which it holds that ki ≥ m + 2, into ki −m simplices,
by non-intersecting hyperplanes passing through the vertices of Ti.

The m-dimensional simplices in the Delaunay tessellation will be referred to as
Delaunay simplices. Note that if the Voronoi diagram V(P ) is non-degenerate then,
by Definition 2.5.2, we have that ki = m + 1 for all i ∈ {1, . . . , l} and from the
uniqueness of the Voronoi diagram the Delaunay tessellation must be unique; see
Figure 2.3a. However, if the Voronoi diagram is degenerate then we note that there
exists an i ∈ {1, . . . , l} such that ki ≥ m + 2 and hence the pretessellation will
be partitioned until a Delaunay tessellation is achieved; since this partition can be
done in multiple ways (compare Figure 2.3c) the resulting Delaunay tessellation
is not unique. We conclude that a Delaunay tessellation is unique whenever the
Voronoi diagram is non-degenerate.

1The Delaunay tessellation is known as the Delaunay triangulation in two dimensions or De-
launay tetrahedralization in three dimensions.
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Property 2.6.1 (Empty circum-hypersphere of Delaunay simplices [19,
p. 74]). Every Delaunay simplex will have an circum-hypersphere, which will be
centred at the Voronoi vertex shared by all generator points in the simplex and the
circum-hypersphere will be empty (strictly containing no generator point).

Since the Voronoi vertex is by definition equally close to all generator points
in the simplex, this distance defines the radius of the circum-hypersphere. Now
assume that a generating point is closer to the Voronoi vertex than this radius,
which implies that the vertex cannot be contained in any Voronoi cell generated by
the points in the simplex. This leads to a contradiction since the Voronoi vertex is
on the boundary of all these Voronoi cells, hence the circum-hypersphere must be
empty.

(a) Delaunay tri-
angulation

(b) Circumcircles
of the triangula-
tion

(c) Delaunay trian-
gulation in the de-
generate case

(d) Circumcircles in
the degenerate case

Figure 2.3: Illustrations of Delaunay triangulations for two different point sets.
(a) and (b) illustrate the triangulation (solid lines), of the first point set: (a) the
Voronoi diagram (dashed); (b) the empty circumcircles. (c) and (d) illustrate a
degenerate Voronoi diagram: in (c) a Voronoi vertex is shared by four Voronoi cells;
the resulting Delaunay triangulation is randomly determined; in (d) it is shown how
these four generator points are located on the same empty circumcircle.

To conclude this Section, we note that the Delaunay tessellation is widely used in
applications (see [22]) and in the 2D-case it is considered the optimal triangulation
in many aspects. In higher dimensions it still possesses many positive attributes,
e.g. the empty circum-hypersphere property. These properties have made the De-
launay tessellation popular. For more details on the mathematical properties on the
Delaunay tessellation see [23]. For 3D applications, it is however not practice to
use the Delaunay tetrahedralization but rather some extension of it, this to ensure
certain mesh qualities that is not guaranteed by the Delaunay tetrahedralization, as
in [24].

2.7 Generalised Voronoi diagram

The Voronoi diagram (VD) can be extended in several ways; see [19]. A common
and useful generalisation is to replace the point set P , employed in Definition 2.5.1
with a finite set of pairwise disjoint objects A. Definition 2.7.1 is a simplification of
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that suggested in [19, p. 115–118]; this is appropriate for our application to a robot
station, for which the general definition is not necessary.

Definition 2.7.1 (Generalised Voronoi diagram (GVD)). Given a space S,
equipped with a distance metric d : S × S → R. Given a finite set of pairwise
disjoint generator objects A = {A1, A2, . . . , An}, where Ai ⊆ S, the Voronoi cell
corresponding to Ai is given by

V (Ai) =
{

x ∈ S : inf
a∈Ai

d(a,x) ≤ inf
a∈Aj

d(a,x), j = 1, . . . , n
}

and the GVD generated by A is the set V(A) = {V (A1), . . . , V (An)}.

A1

A2A3

Figure 2.4: An example of the GVD in the plane for the set of objects A1, A2 and
A3. A notable difference to the VD, see Figure 2.2a, is that the cell-boundaries are
no longer piecewise linear.

In Figure 2.4, a simple example is shown, and it is clear that GVD is very dif-
ferent to the VD in terms of complexity even for simple objects. The VD could
be determined from half-spaces or the Voronoi vertices, but the GVD is dependent
on the shape of the generator objects. Some work on computing the GVD can be
found in [25, 26, 27]; and as [28] states, the conclusion is that for general objects or
objects represented by many faced polyhedrons, there is a lack for exact and efficient
algorithms. For example, [26] gives an O(n log2 n) algorithm where n is the total
number of polyhedron faces, unfortunately n might be very large (≈ 106) in a robot
station so it is impractical to consider every face separately when constructing the
diagram. However, since the GVD has many areas of application, also many approx-
imate algorithms have been developed, some of these algorithms will be considered
in Section 3.4.

2.8 Generalised travelling salesperson problem
As introduced in Section 1.3 the Generalised travelling salesperson problem (GTSP)
is a problem where a number of cities have been clustered into sets of cites; then
a salesperson needs to find the shortest tour visiting one city in each cluster. The
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algorithm suggested in Section 3.2 will partition the complete problem —recall Def-
inition 1.5.2— generating a number of GTSPs, one for each robot in the station. To
further complicate the problem, the edge cost (i.e. distance between two cities) in
these GTSPs is the time of the shortest robot path between the two corresponding
positions of the robot. Computing these paths is in itself a non-trivial task, since
the robot may not collide with any stationary geometry; recall Figure 1.3a.

Introducing theory and algorithms to solve the GTSP is considered to be outside
the scope of this project and instead the robot module in the software IPS is used
to solve this problem. IPS provides both the sequence in the order of which the
robot performs the tasks as well as the paths between the tasks that the robot moves
along. We consider that this problem is well solved by IPS; in fact, IPS is able to well
solve a slightly more difficult problem, which is the MGTSP, i.e., when considering
multiple robots where some tasks can be reached by more than one robot. This more
complicated problem arises in the algorithm as applied to instances with very large
robot stations consisting of multiple robot cells, the workpiece is moved between the
cells. Hence, even though the robots are partitioned into separate spaces, since the
workpiece is moved, a task may still be performed by several alternative robots.
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This chapter treats the suggested model, proposed algorithm, related work, and
considered alternatives. Starting with presenting the model, then continuing with
an overview explaining the algorithm and its components. In Chapter 4, the im-
plementation of the algorithm is explained, while this chapter has a mathematical
emphasis, and may thus seem a bit concise.

3.1 Model of the complete problem
Recall that the goal of this thesis is to give good solutions to the complete problem;
the Definition 1.5.2 is now repeated.

Definition 3.1.1 (complete problem). Generate robot programs with minimal
the cycle time, performs all tasks, has a clearance to the environment, and satisfies
the robot-partitioning constraint (recall Definition 1.5.1).

There are many ways to represent this problem by a mathematical model, as
mentioned in Section 1.3. The problem may be modelled as a min-max generalised
multiple travelling salesperson with an additional partitioning constraint. However,
even without this extra constraint this problem is not as well-studied as the min-
sum multiple travelling salesperson problem or its generalisation where the cities
are grouped into sets of cities and the salesperson’s should visit one city in each
given set of cities, see [7]. As [6] states: there is a lack of algorithms developed
for this generalisation of the min-max multiple travelling salesperson problem. Our
algorithm, summarised in Section 3.2, is based on the idea that given a robot-
partitioning surface the decomposed problem is well solved by IPS, the focus is thus
to find the best robot-partitioning surface by repeatedly solving an approximation
of the complete problem. First, some notation will be established in Section 3.1.1.
Then, a model of the complete problem, suitable for the algorithm, is presented in
Section 3.1.2.

3.1.1 Notation
Before formulating the model, we introduce the notation used.

• The robot-robot clearance limit is denoted dc[cm].

• R denotes the set of all robots.
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• T denotes the set of all tasks to be performed.

• Jrt denotes the (possibly empty) set of joint configurations, i.e. alternative
positions for robot r at task t. This set is often continuous but in such cases
it is discretized.

• The (possibly empty) set of pairwise collisions Drtj denotes the joint configu-
rations which does not satisfy clearance limit to the joint configuration j ∈ Jrt
and is defined as

Drtj :=
{
j̄ ∈ Jr̄t̄ : r 6= r̄, t 6= t̄, d(R(r, t, j), R(r̄, t̄, j̄)) ≤ dc

}
, (3.1)

where R(r, t, j) denote the volume of the robot r at task t with alternative j,
and d is the shortest distance between the two positioned robots.

• The variable xrtj equals 1 if task t is performed using robot r and alternative
j ∈ Jrt; xrtj = 0 otherwise. Note that this choice involves neither the task
sequence nor the path between tasks. Sometimes these will be needed as a
vector and hence x ∈ Bm is used; m = ∑

r

∑
t |Jrt| is the total number of

variables and xl ≡ xrtj, i.e., l is the linear index of rtj.

3.1.2 The model
An exact model of the complete problem, recall Definition 3.1.1, is expressed as to

minimise
x

c(x), (3.2a)

s.t.
∑
r∈R

∑
j∈Jrt

xrtj = 1, t ∈ T , (3.2b)

xrtj + xr̄t̄j̄ ≤ 1, (r̄t̄j̄) ∈ Drtj, j ∈ Jrt, t ∈ T , r ∈ R, (3.2c)
xrtj ∈ {0, 1}, j ∈ Jrt, t ∈ T , r ∈ R, (3.2d)

where c : Bm → R denotes the cost of an assignment, which is the maximum travel
time among the robots. The travel time of a robot is the time of the optimal sequence
for the robot to visit all tasks assigned by the values of the variables x, using the
optimal paths between tasks, while satisfying the partitioning constraint (recall
Definition 1.5.1). In fact, even though the robots are assigned to different tasks
they may still interact since the partitioning surface is not uniquely determined.
We define c(x) := ∞ whenever no partitioning surface exist for that particular
assignment.

(3.2b) simply state that each task should be performed exactly once. (3.2c) is a
necessary condition for the existence of a partitioning surface, since it ensure that
the robot-clearance at the assigned task is sufficient, hence for all values of x for
which (3.2c) is not satisfied, it holds that c(x) = ∞. The result of including the
constraints (3.2c) is that, for any feasible solution to (3.2), there exist a surface,
partitioning the space such that each robot is at least a distance dc

2 from the surface
at any position given by any feasible values of x, but not necessarily including the
paths between the positions. The constraints (3.2c) is called the conflict constraints
and will be useful when solving the problem (3.2).
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3.2 Algorithm overview
The purpose of the algorithm is to give a good solution to the model of the complete
problem. Recall that for any assignment x feasible in (3.2), there exists a surface
that partitions R3 such that the robots are separated and, at any position given by
x, the robots clear the surface with a distance of dc

2 . If this surface is given, the
complete problem separates into a set of subproblems, one for each robot, which
can be well solved by IPS, recall Section 2.8. Hence, for a given assignment x, the
objective function in (3.2a), i.e., c(x), can be evaluated, or well approximated. Here,
it is assumed that the partitioning surface is well approximated by the GVD; hence
the objective function is only approximated. How to find the optimal partitioning
surface is discussed in Section 6.1.

However, evaluating c(x) approximately is time consuming and hence cannot
be done a large number of times. Hence, we suggest the algorithm illustrated in
Figure 3.1. A main component is the approximate problem (see Section 3.3) which
approximates the complete problem (3.2) by estimating the objective c(x); this to
give good candidate solutions to the complete problem. The approximate problem
accounts for that the robot-robot clearance limit is satisfied during the task oper-
ation but not on the path between tasks. In other words, the entire volume swept
along the robot path is not considered, but only snapshots of it at the tasks. The
constraints (3.2c) need to be constructed and becomes a major pre-processing step
in the algorithm; for details, see Section 4.2.

Compute con-
straint matrix

Solve approxi-
mate problem by

Dantzig-Wolfe

Feasible?Terminate

Approximate
GVD

FeedbackReturn best
solution found

yes

no

break continue

Sequencing
and path plan-

ning by IPS

Feasible? Add path
constraint

Enough
solutions?

Add tabu
constraint

yes

no

continue

noyes
break

Feedback

Figure 3.1: Flowchart illustrating how the parts of the algorithm connect. Compo-
nents with thick green border are detailed in Sections 3.3 and 3.4. The blue feedback
block is explained in Section 3.5.

Using a solution from the approximate problem, an approximation of a partition-
ing surface of the complete problem may be created. The robots may be positioned
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at all assigned tasks simultaneously and their volumes constitute the objects cre-
ating the GVD. In Section 3.4, some algorithms for approximating the GVD are
presented.

Using these two components —the approximate problem and the approximate
GVD— an iterative process is started to find good candidates for the complete
problem; see Section 3.5. The process accounts for two errors.

First error accounted for is the surface may block all paths to a specific task and
hence no feasible solution exists in the complete problem. This issue is corrected
by adding additional constraints to the approximate problem, ensuring that a path
exists.

The second error accounted for is the approximation made of the complete prob-
lem. This means that the solution x that is optimal to the approximate problem
might not be optimal to the complete problem. Nevertheless, the true optimal so-
lution will be near-optimal in the approximate problem, since the optimal solution
needs to be balanced between the robots and thus giving a good approximate solu-
tion value. Hence by iteratively solving the approximate problem, in each iteration
adding a constraint preventing any solutions from reoccurring, we find many near-
optimal solutions to the approximate problem, all of which are candidates for the
optimal solution to the complete problem, see Section 3.5.2.

At last, if the algorithm has found a feasible solution to the complete problem
it returns the best such found during the iterative process. If the algorithm fails
to provide any solution, then this indicates that the complete problem (3.2) has no
solution, but due to the added path-constraints there is no strict guarantee that the
complete problem has no solution; see Section 3.5.1 for details.

To measure how good the solutions provided by the algorithm are in terms of
robot station cycle time; they will be compared with the existing solver in IPS, in
which robot collisions are handled by synchronisations messages; see Section 5.3.

3.3 Approximate problem
In order to solve the complete problem (3.2) we need to express the cost function
c explicitly. The approach here suggested only requires an approximate solution as
described in Section 3.2. Hence, an approximation of (3.2a) is made so that the
problem may be approximately solved.

3.3.1 Semi-assignment problem with conflicts
The following approximation of (3.2a) is made:

c(x) ≈ c̃(x) := max
r∈R

∑
t∈T

∑
j∈Jrt

crtjxrtj

 . (3.3)

This is a rough estimate but it will give surprisingly good results; see Section 5.3.
The value of crtj, i.e., the cost of an assignment, is discussed in Section 4.

In our implementation it becomes crucial to reduce the number of constraints in
(3.2), in order to speed up the computations. Therefore, the constraints (3.2c) are
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reformulated as (3.4a) (or its vector equivalence (3.4b)). The equivalents between
the constraints (3.2c) and (3.4a) is established by first, summation over the set Drtj,
using the assignment constraint (3.2b) to bound the sum of xrtj by |T |. And second,
by combining the constraints (3.4a) for rtj and r̄t̄j̄ to retrieve the constraint (3.2c)
for (r̄t̄j̄) ∈ Drtj.

xrtj + 1
|T |

∑
(r̄t̄j̄)∈Drtj

xr̄t̄j̄ ≤ 1, j ∈ Jrt, r ∈ R, t ∈ T . (3.4a)

(
Im + 1

|T |
D
)

x ≤ 1m,1. (3.4b)

Here, 1m,1 is the unit column vector of size m and D is an m×m-matrix of zeros and
ones: one indicates that the variables of the corresponding column, e.g. xrtj, and
row, e.g. xr̄t̄j̄, are in collision according to Drtj. Note that, since Drtj is symmetric,
which is clear from (3.1), also D is symmetric.

To conclude, using approximation (3.3) of the cost function and reformulating
the constraints (3.2c) as (3.4b), the approximation of problem (3.2) becomes:

minimise
x

max
r∈R

∑
t∈T

∑
j∈Jrt

crtjxrtj

 , (3.5a)

s.t.
∑
r∈R

∑
j∈Jrt

xrtj = 1, t ∈ T , (3.5b)
(

Im + 1
|T |

D
)

x ≤ 1m,1, (3.5c)

xrtj ∈ {0, 1}, j ∈ Jrt, r ∈ R, t ∈ T . (3.5d)

The problem (3.5) is a min-max semi-assignment problem with conflict con-
straints (3.5c), causing excluding conflicts among the assignments.

Relaxing the conflict constraint from the problem would lead to a min-max semi-
assignment problem, which is still not a standard problem. In fact, works as [29] do
not consider this type of problem. Note that the generalised assignment problem
(GAP) resembles this problem: it includes a resource constraint and the objective
(3.5a) may be viewed as finding the minimal level of resources, expressed as:

minimise
x, z

z, (3.6a)

s.t.
∑
t∈T

∑
j∈Jrt

crtjxrtj−z ≤ 0, r ∈ R, (3.6b)

(3.5b), (3.5c) & (3.5d) hold. (3.6c)

This indicates that the problem (3.5) is quite hard, since the GAP is an NP-hard
problem, see [30].

Motivated by this similarity to the GAP, a solution procedure to solve the GAP
can be adjusted to solve this similar problem; the survey [31] suggests a relaxation
of the resource constraint (3.6b); [14] suggests using this relaxation with a Dantzig-
Wolfe decomposition. However, since the resource constraint (3.6b) depends on
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the variable z, the approximate problem is instead decomposed by relaxing the
assignment constraint (3.5b), which is the second best alternative according to [14].

There are three alternatives for using this decomposition:

• The first alternative is to relax only the assignment constraints (3.5b) in (3.6);
this is described in Section 3.3.3.

• The second alternative is to include also the min-max objective from (3.5) in
the subproblem; this is described in Section 3.3.4.

• The third alternative is to include both the assignment constraints (3.5b) and
the conflict constraints (3.5c) in the subproblem; this is described in Section
3.3.5.

Before going into details on these three formulations, an important observation
is made which will lead to a very effective way of finding a feasible solution to both
the approximate problem (3.5) and the complete problem (3.2).

3.3.2 Feasibility heuristic - MiniSat
It is of interest to convert the constraints of problem (3.2) into conjunctive normal
form (CNF), because there exist very efficient solvers for CNF expressions; here
MiniSat [32] is used; see Section 4.1.3 for details. For recap on CNF, recall Section
2.1.

For feasibility of the problem (3.2), the constraints can be written in conjunctive
normal form (CNF): for any assignment of x, the constraints (3.2b) and (3.2c) are
either satisfied or violated, and an equivalent CNF expression exists that evaluates
to true or false, respectively.

The constraints (3.2b) are primarily a conjunction of or–operands, since each
task should be assigned to at least one robot. This results in the expression

A :=
∧
t∈T

∨
r∈R j∈Jrt

xrtj, (3.7)

where the careful reader might object since the constraints (3.2b) states that each
task should be performed exactly once. To counter this the expression

B :=
∧
t∈T

⊕
r∈R j∈Jrt

xrtj (3.8)

may be used instead. The operator ⊕ is the n-xor operator, which can be reduced
to a CNF but the number of clauses is rather large; recall Section 2.1.

The constraints (3.2c) are simple to reduce to a CNF expression, since we only
need to restrict all members of Dtrj to be false whenever xtrj is true, and vice versa.
This is accomplished by the definition

C :=
∧
rtj

 ∧
(r̄t̄j̄)∈Drtj

(
¬xrtj ∨ ¬xr̄t̄j̄

) . (3.9)
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Hence, to determine the feasibility of (3.2) a CNF solver may be used. Moreover,
the problem may be simplified by only considering A and C from (3.7) and (3.9),
respectively. The solution given may then contain multiple assignments for a single
task. Anyway, pruning a given solution until each task is performed exactly once is
simple. Hence, the large set of clauses B in (3.8) is redundant.

3.3.3 Decomposition with simple subproblem
Following the notation introduced in Section 2.3, the problem (3.6) may be decom-
posed using a Dantzig-Wolfe decomposition, by introducing the set

S∗ :=

x ∈ Bm :
∑
r∈R

∑
j∈Jrt

xrtj = 1, t ∈ T

 , (3.10)

which replaces constraints (3.5b) and (3.5d). Therefore, this set may be enumer-
ated as S∗ = {x1,x2, . . . ,xn}, where each xj is an assignment that might contain
collisions.

For a more concise expression, the constraints (3.6b) are written in matrix form.
We get the equivalent condition (3.11), where the |R| × m matrix C has one row
per robot and one column per alternative position, Crl := 1 if alternative l concerns
robot r; Crl := 0 otherwise, and the constrains are expressed as

Cx− z ≤ 0|R|,1. (3.11)

Hence, the following IMP is equivalent to the approximate problem (3.6):

minimise
λk, z

z, (3.12a)

s.t.
∑

1≤k≤n
Cxkλk − z ≤ 0|R|,1, (3.12b)

∑
1≤k≤n

(Im + 1
|T |

D)xkλk ≤ 1m,1, (3.12c)
∑

1≤k≤n
λk = 1, (3.12d)

λk ∈ {0, 1}, k = 1, . . . , n. (3.12e)

From (2.15) we get the corresponding subproblem (the z-column is treated as
the slack columns in Section 2.2, i.e., since it is in the restricted master problem
there is no need to find its reduced cost) to

minimise
x∈S∗

{
0− γ̄γγTx− q̄

}
, where γ̄γγ := CTµ̄µµ+

(
Im + 1

|T |
D
)
π̄ππ. (3.13)

Note that the matrix of conflicts D is not transposed since it is symmetric. The
solution of (3.13) reduces to finding the largest γ̄rtj for each task t.

In Section 2.3 the lower bound (2.19) of MP is given. Considering z as a column
in the RMP, it will trivially have a non-negative reduced cost in an optimal solution
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to the RMP. Therefore, the bounds still hold and by replacing z̄ (optimal value of
RMP) using linear programming duality and inserting the problem of finding the
least negative reduced cost c̄∗. The lower bound for the approximate problem (3.12)
takes the explicit form

min
x∈S

(
−γ̄γγTx− q̄

)
+ π̄ππT1m,1 + q̄ ≤ z∗. (3.14)

Here the MP (3.12) is not decomposed over the tasks, even though it might have
been since it is a linear optimization problem and we may define

S∗t :=

x ∈ Bm :
∑
r∈R

∑
j∈Jrt

xrtj = 1, xrt̄j = 0, t̄ ∈ T \ {t}

 , (3.15)

which is clearly a partition of S∗. However —recall the structure of the decomposi-
tion (2.17)— the convexity constraint in the MP would be identical to the relaxed
constraint (3.5b). Moreover, a member of S∗t has exactly one variable set to one;
the corresponding column in the MP will thus be identical to the column in the
approximate problem. These two facts give the conclusion that the original problem
(3.6) is identical to the MP; the relaxed MP will thus be a continuous relaxation of
the original problem.

With this observation we conclude that the bounds retrieved from the MP (3.12)
will be equivalent to those of a continuous relaxation of (3.6). The two reasons for
solving the MP without decomposing the subproblem are (i) that the subproblem is
easily solved so there is no reason in further simplifying it, and (ii) from early tests
it turns out that not many columns need to be generated and hence the size of the
RMP will be smaller, and therefore faster to solve compared to the MP (3.6) with
the integrality relaxed; see Section 5.1. An additional reason for not decomposing
the problem is that the identical problem, the LP version of (3.6), will be solved
and used as a reference, using an ILP solver.

Finally, as noted in Section 2.4, a branching procedure will be used to retrieve
an integral solution to the MP; this procedure will be presented in Section 3.3.7.
This since the other suggested decompositions, presented in Sections 3.3.4 and 3.3.5,
respectively, will use the same branching rule.

3.3.4 Decomposition with min-max subproblem

A motivation for not using the first decomposition is because it results in an easily
solved subproblem and actually somewhat harder subproblems are usually preferred,
as mentioned in [14]. An example given by [14] is to include the resource constraint
in the subproblem in order solve a GAP. This may seem counterintuitive but it
may be viewed as the subproblem solves a greater part of the approximate problem,
and this typically results in better lower bound from the MP, compared to a simple
subproblem.

With this in mind the following suggestion is made to solve the approximate
problem on the form (3.5) using definition of S∗ given in (3.10). Let c̃(x) denote the
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approximation of c(x) given in (3.3), the (approximate) MP is expressed as to

minimise
λk

∑
1≤k≤n

c̃(xk)λk, (3.16a)

s.t.
∑

1≤k≤n

(
Im + 1

|T |
D
)

xkλk ≤ 1m,1, (3.16b)
∑

1≤k≤n
λk = 1, (3.16c)

λk ∈ {0, 1}, k = 1, . . . , n. (3.16d)

Hence, the subproblem (2.18) can then be expressed as to

minimise
x, z

−γ̄γγTx + z − q̄, (3.17a)

s.t. Cx− z ≤ 0|R|,1, (3.17b)
x ∈ S∗, (3.17c)

where γ̄γγ := (Im + 1
|T |D)π̄ππ and c̃(x) from (3.16a) has been replaced by introducing

z and constraints (3.17b). This subproblem again resembles the GAP but here the
resource should be minimised as well. As mentioned in [31] a viable approach is
to employ a Lagrangian relaxation of constraints in the definition of the set S∗ in
(3.17c), but for this case that would yield a set of knapsack problems where also
the resource z should be minimised and no literature for solving such a problem was
found. Hence, here the Lagrangian relaxation of the resource constraint (3.17b) is
suggested.

First, we reformulated the problem by realising that in an optimal solution to
(3.17) at least one of the constraints (3.17b) will be active, we call it r̃. If r̃ would
be know, the problem to

minimise
x

CT
r̃ xr̃ − γ̄γγTx− q̄, (3.18a)

s.t. −CT
r̃ xr̃ + CT

r xr ≤ 0, r ∈ R \ {r̃}, (3.18b)
x ∈ S∗ (3.18c)

is equivalent to (3.17), where robot, r̃, is assumed to possess the longest approximate
cycle time. By solving (3.18) for every possible r̃ the best solution over these cases
is also optimal in (3.17).

Now, since the main goal of solving the subproblem is not to find an optimal
solution but only to find a negative reduced cost for the MP, this allows us to solve
the problem to near-optimality; as noted in [33], a Lagrangian heuristic is applicable
in such a case. With this motivation, a Lagrangian relaxation with respect to the
constraints (3.18b) is made for each subproblem, yielding the problem to find the
optimum of the Lagrangian dual, given by

max
µr≥0

min
x∈S∗

Cr̃

1−
∑

r∈R\{r̃}
µr

xr̃ +
∑

r∈R\{r̃}
µrCrxr − γ̄γγT

r x

− q̄. (3.19)

If we define µr̃ := 1−∑r∈R\{r̃} µr, (3.19) reduces to

max
µr≥0

[
min
x∈S∗

(
µ̄µµTC− γ̄γγT

)
x
]
− q̄, (3.20)
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which is a simple problem to solve since for any given µµµ, the inner minimisation can
be evaluated in O(m) time and since the number of robots is usually rather small,
µµµ is in a low dimensional space. To solve this, a subgradient optimization method
may be used (for details on subgradient optimisation, see [34, Ch. 6.4] and Section
4.3.3). Note that there is no imminent need for a primal feasibility heuristic since
any x ∈ S∗ is also feasible in (3.17).

3.3.4.1 Lower bound for min-max subproblem

A lower bound for the branching procedure needs to be determined and as given in
(2.19) it relies on the optimal solution of the subproblem. However, since only a
near optimal solution is achieved, a lower bound to this, easily retrieved from the
Lagrangian dual (3.20), may be used instead. However, since the Lagrangian dual
involves solving an integer problem, there is a duality gap of unknown size, which
may destroy the desired property of an improved lower bound.

3.3.5 Decomposition with conflicted subproblem
As said, there might be great gain in decomposing using a harder subproblem; this
since it may give better bounds. In this particular case we may restrict the set S∗
from (3.10) to only include columns satisfying the conflict constraint (3.5c), that is

SC∗ := {x ∈ Bm : (3.5b) & (3.5c) hold} . (3.21)

The IMP thus becomes to

minimise
λk, z

z, (3.22a)

s.t.
∑

1≤k≤n
Cxkλk − z ≤ 0|R|,1, (3.22b)

∑
1≤k≤n

λk = 1, (3.22c)

λk ∈ {0, 1}, k = 1, . . . , n. (3.22d)

This is a rather small problem; note that the number of constraints is only one more
than the number of robots in the station. Thus, any basic feasible solution to the
corresponding MP will be a combination of only that few columns.

The corresponding subproblem to the MP becomes to

minimise
x∈SC∗

{
0− γ̄γγTx− q̄

}
, where γ̄γγ := CTµ̄µµ. (3.23)

Here, µ̄µµ are the optimal values of the dual variables corresponding to the constraints
(3.22b) in the RMP and q̄ is again the optimal values of the dual variable corre-
sponding to the convexity constraint (3.22d).

As in Section 3.3.3, the lower bound is derived from (2.19) and takes the explicit
form

min
x∈S

{
−γ̄γγTx− q̄

}
+ q̄ ≤ z∗. (3.24)

28



3. Methods

3.3.5.1 Solving the conflicted subproblem

The approach suggested to solve the subproblem (3.23) is to relax the conflict con-
straint, yielding the simple subproblem (3.13), and then resolving any resulting
conflicts by a branching procedure.

Thus, the subproblem is solved by a branching procedure, which works as follows.
In each node, the subproblem (3.23) is relaxed by considering the larger set S∗ in-
stead of SC∗. If the solution x̄ to this relaxed problem is feasible in the subproblem,
i.e., if it contains no conflicts, then it is optimal in the current branch.

If the solution contains conflicts, then two new branches are made. On the
left branch the variable with the most conflicts are set to 1 and all its conflicted
variables are removed (i.e., set to 0), and on the right branch the variable with most
conflicts is removed (i.e., set to 0). Note that, in each of these branches at least one
variable conflict is removed; hence, when sufficiently many such constraints have
been imposed on the set S∗ , the resulting solution fulfils x̄ ∈ SC∗.

Note also that the relaxed problem offers a lower bound on the optimal value
of the subproblem and hence whenever a node has an optimal value to the relaxed
subproblem that exceeds that of the best obtained subproblem solution, then this
branch can be cutoff the tree.

This approach of solving the conflicted subproblem is heavily dependent on a
preprocessing step (discussed in Section 4.3.4) that reduces the number of variables.

3.3.6 Several optimal solutions to MP

When an optimal solution to the MP of the approximate problem (3.5) is found,
it is not likely a unique optimal solution since the objective (3.5a) only minimises
the longest completion time and there might exist equally costly alternatives. Since
the goal is to retrieve a solution to the IMP of the approximate problem (3.5) and
since the method to reach there is a branching procedure (see Section 3.3.7) it might
be possible to find another optimal solution to the MP containing fewer fractional
variables.

Before branching, the solution λ∗ is first converted to the original variables x∗,
according to (2.11). The solution is called fractional if any element of x∗ is non-
integer, i.e., if a task is partially performed by each of several alternatives. The
branching rule aims to prevent fractional solutions, however as noted there might
exist other LP optimal solutions with fewer fractional tasks.

Here, a simple approach is applied to an LP optimal solution to the approximate
problem (3.5) resulting in fewer fractional tasks: For every alternative that is frac-
tional, i.e., for each variable value x∗rtj ∈ (0, 1), set it to 1 and all other alternatives
corresponding to the same task to 0, if the resulting solution is still feasible and op-
timal the current changes are kept, otherwise the changes are discarded. Note that
even though the aim is to reduce the number of fractional variable values so that
the branching will be more efficient, this approach might also result in an integral
solution, so that further branching is not needed in the current node.
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3.3.7 Branching rule
Any solution to the MP will in particular satisfy the assignment constraint (3.2b).
Hence, if one variable x∗rtj ∈ (0, 1), then at least one more variable is also fractional.
Using this observation, a branching rule inspired by [35] is formulated.

The idea is to create a balanced tree, i.e., the number of new conditions on each
the two branches should be approximately equal; see [13]. One error that might
occur in a fractional solution is that a task is partly performed by different robots.
In this case the left branch will only allow the robot with the highest approximate
cycle time to perform the task and the right branch will not allow this robot to
perform the task. If this is not the case, then it must be the case that a task is
performed by a single robot using two or more alternative positions. An inspection
of the approximate problem (3.5) reveals that this can happen in an optimal solution
only in the case of conflicts (3.5c) or if several integral solutions are equally good
(which is partly prevented in Section 3.3.6). To prevent the later error, the branching
rule aims to remove as many pairwise conflicts as possible, as alternatively stated
in (3.2c).

In the latter case, the branching rule in Algorithm 3.1 is applied. The algorithm
tries to balance the nodes by forcing about half of the alternatives to be used in
either branch. In addition, the alternatives on either branch are grouped according
to common conflicts. This since if all alternatives allowed for a task, have some
conflict variables in common then all of these will be set to zero by the conflict
constraint (3.2c), since one of them always appear in the assignment constraint
(3.2b).

Using this, the tree will be searched more effectively since more alternatives are
tested in each node, as explained in [35]. In addition, since the variables are grouped
according to conflicts, this rule will increase the possibility to remove additional
variables (see Section 4.3.1). It remains to choose the order, in which the tree
created by the left and right branches is searched. Several approaches exist (see
[36]) and we chose a depth first search (see Section 4.3.6).

3.4 Approximation of the GVD
For an assignment x∗ from the approximate problem (3.2), consider the objects
R1, R2, . . . , R|R|, where Rr is defined as

Rr :=
⋃
t∈T

⋃
j∈Jrt : x∗

rtj=1
R(r, t, j), (3.25)

where R(r, t, j) denotes the volume of the robot r at task t with alternative j. Now,
since the conflict constraint (3.2c) is satisfied, there is a guaranteed minimum clear-
ance between the volumes covered by different robots; as examined in Section 2.7,
these objects can be separated using the GVD concept. An exact implementation of
the GVD concept would yield one Voronoi cell for each robot; in this Section we con-
sider some approximations of these cells. In Section 3.5 the resulting approximate
cells will be used to solve by which paths the assigned tasks should be performed
and suggest how the solution can be improved.
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Algorithm 3.1 Second branching rule
1: Find t, the fractional task with most pairwise conflicts.
2: Denote At := ⋃

r Jrt ∩B to be all alternatives for the task, where B denotes all
alternatives allowed in the node.

3: Find r & j with highest value of xrtj and (rtj) ∈ At.
4: Let VR := {(rtj)} and CR := Drtj ∩B
5: Find r & j with least intersection |CR ∩ Drtj|, in case of ties pick the largest
|Drtj ∩B|.

6: Let VL := {(rtj)} and CL := Drtj ∩B
7: for all (rtj) ∈ At \ (VL ∪ VR) do
8: if |CL ∩ Drtj| > |CR ∩ Drtj| then
9: Update VL := VL ∪ (rtj) and CL := CL ∩ Drtj.

10: else if |CL ∩ Drtj| < |CR ∩ Drtj| then
11: Update VR := VR ∪ (rtj) and CR := CR ∩ Drtj.
12: else if |VL| < |VR| then
13: Update VL := VL ∪ (rtj) and CL := CL ∩ Drtj.
14: else
15: Update VR := VR ∪ (rtj) and CR := CR ∩ Drtj.
16: end if
17: end for
18: Left branch force all xrtj in VR to zero and thus also all xrtj in CL to zero. The

right branch does the equivalent using VL and CR.

There are many different approximations of the GVD; see [37, 28, 19, 38]. In
this project two known algorithms are implemented and an improvement of one of
them is suggested. The first algorithm ([19, p. 287]) relies on a discretization of the
continuous objects and finds the Voronoi diagram for the discretization; see Section
3.4.1. The second algorithm ([28]) relies on interpolations in a distance field; see
Section 3.4.2; the suggested improvement is an alternative interpolation in the same
distance field; see Section 3.4.3.

3.4.1 Approximation by points
This approximation is motivated by from the fact that the Voronoi diagram can be
easily computed on a set of points. Hence, by approximating the objects Rr (defined
in (3.25)) using a large number of points, i.e., a discretization of the continuous
objects, the Voronoi faces shared between points belonging to different objects will
approximate the GVD; for a pseudocode, see Algorithm 3.2.

Algorithm 3.2 Approximation by points [19, p. 287]
1: Approximate the boundary of each object Rr with a finite point set Pr.
2: Compute the Voronoi Diagram, V for all points, P = ⋃|R|

r=1 Pr.
3: For each Voronoi cell: delete from V all facets shared by generator points from

same point set.
4: Return V .
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In step 2 of Algorithm 3.2 the Voronoi diagram is computed for a large set of
points. This is a well-studied problem and there exist many efficient algorithms for
computing the Voronoi diagram in three and higher dimensions. The most popular
is a lifting transformation, i.e., each point pi ∈ P is appended the square of its
norm, such that the transformed point is defined as p∗i = [pT

i , ‖pi‖2]T. Note that
p∗i ∈ Rd+1. The convex hull of the transformed points is a Delaunay pretessellation
of the point set P from which the Voronoi diagram is easily retrieved (see [19,
p. 278]). To conclude, many efficient algorithms for computing the Voronoi diagram
uses an efficient convex hull algorithm; an example is [39], which is in the Matlab
kernel.

A1

A2A3

Figure 3.2: Illustrate the output of Algorithm 3.2 as applied to objects A1, A2 and
A3 from Figure 2.4 (in which also the exact GVD is illustrated). The nine bullet
points represent the discretization, and the solid lines comprise the approximated
GVD, and the dotted lines indicate the facets that are deleted in step 3.

We have used an implementation of the algorithm in [40], which utilises the fact
that a Voronoi cell is an intersection of half-spaces (recall (2.22)) and a procedure
(described in [41, pp. 82–83]) to reduce the number of redundant half-spaces that
are tested. This procedure is described in Section 4.1.5.

Figure 3.2 shows an example of the output of Algorithm 3.2. We can conclude
that both number of points and the position of the points will impact the quality
of the approximation of the Voronoi cells. In Section 5.2 we investigate how many
randomly distributed points are required for a good enough approximation of the
GVD.

3.4.2 Approximation by distance field
This approximation algorithm of the GVD is originally suggested in [28] and it is
based on the concept of a distance field. A distance field is a set of points where
each point has an associated shortest distance to each of the robots Rr. The points
in the distance field may be uniformly spread (see [42]) but as suggested in [28], this
assumption is dropped.

We present a modified version of the algorithm in [28]. The algorithm is com-
posed by four major steps:

1. Determine the locations of the points in the distance field (Figure 3.3a), using
the concept of octree; see Section 3.4.2.1.

32



3. Methods

2. Measure the distances to the objects in these points (Figure 3.3b); see Section
3.4.2.2.

3. Resolve ambiguities in topology by introducing additional points in the dis-
tance field; see Section 3.4.2.3.

4. Approximate points on the GVD by interpolating in the distance field (Fig-
ure 3.3d) and build GVD approximation from these points (Figure 3.3c); see
Section 3.4.2.4.

In Figure 3.3, the 2D-example of a GVD in Figure 2.4 is continued using this algo-
rithm. A 3D-example in 3D is given in Section 4.4.2.

A1

A2A3

(a) An octree subdivision.

A1

A2A3

(b) Octree vertices (gray dots) and their
closest objects.

A1

A2

A3

(c) A close-up of the interpolation.

A1

A2

A3

(d) The resulting GVD approximation.

Figure 3.3: Illustration of the construction of the approximate GVD using distance
fields, for in the example in Figure 2.4.

The main difference to the algorithm in [28] is that that we do not use the
distance transform (which approximates the objects by a set of points, from which
all distances are computed and which allows for very fast computation). The reasons
are the following:

• To increase accuracy of the approximation. Since the complete algorithm con-
sists of many parts, inaccuracy in one part may lead to erroneous conclusions
in other parts.

• The use of the distance transform presented in [28] requires an extended in-
terface to IPS (described in Section 4.1.2).
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Using the distance transform in [28] is considered as further work, see Section 6.1.

3.4.2.1 Construction of distance field using octree

The suggested algorithm is based on the concept of an octree, which is a recursive
subdivision of a 3D-cell into smaller cells; see Figure 3.3a for an example in R2; in
2D an octree is called a quadtree. Starting with a single 3D-cell representing the
domain of interest, the cell is recursively subdivided until a stopping criterion is met.
Each cell contains references to its parent cell and all its child cells; and as in [28] all
vertices of the cell contains references to its neighbouring vertices (which might be
contained in other cells). This structure allows for finding a face in a neighbouring
cell in O(1) operations. Note that there exist many different representations of the
octree, of which some other also possess this property; see [43].

The subdivision routine in Algorithm 3.3 consist two subdivision rules, the first
rule ensures that any leaf in the octree intersects at most one object, and the second
rule guarantees that there exist at least one empty cell separating the objects.

Algorithm 3.3 Subdivide cells [28, p.301]
1: Initiate a tree T and a list of new leafs L = {c}, where c denotes a cell containing

the whole domain.
2: for all c ∈ L do
3: if |I| > 1, where I := {r ∈ {1, . . . , |R|} : c ∩Rr 6= ∅} then
4: Subdivide c and push the new eight cells to the end of L.
5: else if c ∩Rr 6= ∅ and c̃ ∩Rr̃ 6= ∅ for r 6= r̃ and c̃ face neighbour of c. then
6: Subdivide c and push the new eight cells to the end of L.
7: end if
8: Remove c from L and insert it into T .
9: end for

3.4.2.2 Measuring distance field

[28] suggests that the distance field is approximated by a distance transform, but as
stated in Section 3.4.2 this is discarded. IPS has a fast routine for computing the
distance to an object, but since the number of vertices (corners of octree cells) is
large, Algorithm 3.4 is used to reduce the number of redundant distance calculations.

Algorithm 3.4 calculate bounds on the distance to reuse information from pre-
vious distance calculations. The idea is to avoid computing the distance to objects
in remote Voronoi cells. An important reason being that this procedure is easy
parallelize, measuring several vertices before updating. Figure 3.3b illustrates a
2D-example of objects and their corresponding closest vertices.

3.4.2.3 Resolve ambiguities

As noted in [28] the fact that the distance field is built in a discrete space might intro-
duce ambiguities in the topology of the approximated GVD, i.e., several topologies
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Algorithm 3.4 Determine the closest objects in the distance field
1: Given a set of vertices V in the octree. Initialise dvrlb := 0 and dvrub := ∞ for all

vertices v ∈ V and objects r ∈ {1, . . . , |R|}.
2: for all v ∈ V do
3: let r̄ := argminr{dvrub}
4: if ∃r 6= r̄ : dvr̄ub > dvrlb then
5: Measure and update dvrlb := dvrub := d(v, r) for all r where dvrlb < dvr̄ub
6: for all v̄ ∈ V do
7: Update dv̄rlb := max{dv̄rlb , dvrlb − d(v, v̄)}
8: and dv̄rub := min{dv̄rub, dvrub + d(v, v̄)}.
9: end for
10: end if
11: end for

match the ambiguous cell; see Figures 3.4a and 3.4b. In the case of an ambiguous
cell there may exist several ways to resolve the ambiguity; see [44].

A first attempt to resolve these ambiguities is by further subdividing the cell,
hoping that the new leaf cell in the octree will be unambiguous. According to [28],
a cell is ambiguous if and only if it is reduced to a simplex of dimension ≤ 3 when
all neighbouring vertices with the same closest object are merged; see Figure 3.4c.
This subdivision continues recursively until a maximum recursion depth is reached.
Then if there are still ambiguous cells, these are resolved by adding a central hub;
see Section 3.4.2.5 for details.

3.4.2.4 Ensuring better interpolation

A final subdivision rule is here introduced to improve the interpolation in Section
3.4.2.5.

Recall that each octree leaf is ensured to have at least one empty buffer cell
between the robots (see Section 3.4.2.1), which ensures that the GVD is enclosed in
any such cell. Hence, all cells are recursively subdivided until no cell simultaneously
intersects the GVD and an object.

Unfortunately, to check whether a cell and the GVD intersect is in general hard,
but we will use a somewhat weaker but simple check: if a cell contains vertices
corresponding to different closest objects then it will contain the approximated GVD.
The resulting approximate GVD is enclosed by empty buffer cells; in particular, the
vertex-object distance is non-zero for each vertex used in the interpolation formula
(3.29).

3.4.2.5 Compute GVD approximation

The approach suggested in [28] to compute the GVD approximation is to approx-
imate the GVD in each cell separately, while ensuring that the interface between
cells is defined unambiguously. The output for each cell will be a set of triangles,
each of which represents the interface between two generalised Voronoi cells. These
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(a) A topology a with
central hub.

(b) A topology without a
central hub.

(c) The cell with col-
lapsed identical labels.

Figure 3.4: Illustration of an ambiguous cell and two of the possible topologies;
the vertices are grouped by colours representing the closest object. (c) The cell does
not become a simplex by collapsing vertices with identical labels. This example is
found in [28].

triangles are computed as follows.
The first extreme point of such a triangle will be on an edge of the cell, between

two adjacent vertices with different closest object. Denote the vertices v1 and v2 and
the corresponding objects R1 and R2. We want to approximate the point on the
line between v1 and v2, and which is equally close to R1 and R2, i.e., a point on the
GVD. This is done by assuming that the distance between the respective objects
and vertices change linearly along the line mathematically expressed as

p = v1 + t(v2 − v1), (3.26)
d(p,R1) ≈ d(v1, R1) + t[d(v2, R1)− d(v1, R1)], (3.27)
d(p,R2) ≈ d(v1, R2) + t[d(v2, R2)− d(v1, R2)], (3.28)

and illustrated in Figure 3.5. The solution of this system of equations 3.26 is given
by

p = ∆1v2 + ∆2v1

∆1 + ∆2
, where ∆i := |d(vi, R2)− d(vi, R1)|. (3.29)

Note that the values of the distance functions are not yet known but approximated
by the bounds of the distance field. Therefore, the distance field is remeasured for
all vertices that were the bounds do not coincide.

d1
1 d2

1 d1
2 d2

2

R1 R2

v1 v2

Figure 3.5: Illustration of the distances used in the interpolation (3.26), where
dij := d(vi, Rj).

Our linear approximation is a generalisation of the suggestion in [28], that the
point on the object corresponding to the shortest distance to the vertices remains
the same and which only requires a measured distance to the closest object of each
vertex.
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The main reason for diverting from the suggestion in [28] is, however, due to
implementation reasons in the current IPS interface; see Section 4.1.2.

The second extreme point of each these triangles is located on a face of the cell.
Each face of the cell is composed by 2D-cells since the neighbouring cell sharing this
face may have been subdivided, see Figure 3.6. In each such 2D-cell every interpo-
lated point (first extreme point) is connected to the mean point of all interpolated
points in the 2D-cell, which becomes the second extreme point.

The last extreme point of each triangle equals the mean of all second corners in
the entire cell. Note that this implies that ambiguity of a cell is resolved by use of a
central hub, as illustrated in Figure 3.4a. An illustration of these triangles are given
is Figure 3.6.

Figure 3.6: A 3D-cell of the octree. A red (green) point denotes that the cor-
responding vertex is closest to the red (green) object, an orange point denotes the
interpolation (3.29) of a red and a green point, a black dot denotes the second corner
of a triangle, and the blue point denotes the common third corner. The approximate
GVD is represented by the grey triangles.

3.4.3 Distance field approximation improvement
We next suggest an improvement of the distance field approximation. The drawback
of the GVD approximation described in Section 3.4.2.5 is that the two extra points
introduced to create the triangles are not necessarily on or even close to the GVD.
This is illustrated in Figure 3.7a: since the mean does not account for the measure-
ments, the added point may be far from the true GVD. To remove these artefacts
the triangles extreme points of the approximating the GVD will instead be located
at interpolated points. To achieve this, a Delaunay tetrahedralization is made on
the distance field vertices, as described in Section 2.6. Applying Property 2.6.1 (the
empty circum-sphere property) yields that every Delaunay tetrahedron will be con-
tained in a cell. Hence the triangulation may be done in parallel, considering each
cell separately. All degenerate Voronoi cells are resolved in a deterministic manner,
to ensure that the interfaces between cells are unambiguous.

In the given tessellation, for each tetrahedron with vertices having different clos-
est objects, triangles representing the interface between generalised Voronoi cells
need to be computed. This is, however, a simple as compared to the case of a
3D-cell and no extra points need to be introduced.
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(a) Using a central hub. (b) Using a Delaunay tessellation.

Figure 3.7: An case for which the algorithm suggested in [28] performs poorly. (a)
The yellow vertex is very close to the GVD, implying that a good approximation
of the GVD should also be close to the GVD. (b) The result of the suggested
improvement.

The surface that separates one object from all other objects can intersect the
tetrahedron in either of just two ways. Either one or two adjacent vertices are iso-
lated on one side of the surface –all other combinations are variants of these two;
see Figure 3.8. For one isolated vertex only a triangle is needed; see Figure 3.8a.
For two vertices isolated on one side of the surface two triangles are needed, and
which are created by first finding two interpolated points not sharing a face in the
tetrahedron. These two points will create the common edge of the two triangles,
which then include one of the remaining points each; see Figure 3.8b. By repeating

(a) One vertice is isolated on one side of
the surface.

(b) Two adjacent vertices are isolated on
one side of the surface.

Figure 3.8: The two cases of how the tetrahedron vertices may separated by a
surface, all other cases can be retrieved by rotating the vertex order and/or flipping
the meaning of black and white.

this procedure of separating one object from all other objects a surface that repre-
senting the GVD. A 2D-example of the result is shown in Figure 3.7b. To see the
improvement in the 3D-case see Section 4.4. The improvement made in the 3D-case
is illustrated in Section 4.4.

3.5 Path planning and updating
As mentioned in Section 3.2, the GVD surface created using an optimal solution to
the approximate problem (3.5) might not be optimal or even feasible. In fact, the
cost function (3.3) only estimates the true cost in the problem (3.2) and since the
approximate GVD is created from the robot objects positioned at the tasks without
considering the paths between the tasks.

We have used IPS to solve the sequence and path-planning problems where the
robots are restricted by a given separating surface. We assume that if there exists
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a feasible solution for a specific robot, i.e., there exist a cycle among all assigned
tasks, IPS will find it, and that the solution will be near optimal.

Here an iterative method is suggested which searches for feasible and good solu-
tions. This search will iteratively add constraints to the approximate problem (3.5).
The second phase of the search will try to balance the load between the robots,
based on the cycle times of the solutions found.

3.5.1 Search for a feasible solution
If IPS is unable to find a feasible solution, then there exists at least one task for
which no collision-free path from the home position can be found. To ensure that
a path will exist in the next iteration, a path from the corresponding robot’s home
position is planned, disregarding the separating surface. Using this path, the set
Drtj of pairwise collisions defined in (3.1) is expanded: the robot object R(r, t, j)
will include snapshots of the robot traversing the path from its home position to
the configuration j ∈ Jrt. These snapshots are sufficiently many to make a good
enough approximation of the swept volume of the robot.

Note than when this additional constraint is added, the approximate problem
(3.5) may become infeasible even though a finite solution exists for the complete
problem (3.2). This since the additional constraints ensures a robot a particular
path to a task and hence prohibit any other robot to enter that space, hence may
cause another robot to be unable to reach an assigned task. However, the additional
constraint ensures a particular path that may block other tasks to be performed by
any robot, but another, perhaps longer path would not cause this blockage.

3.5.2 Prohibited search for an improved solution
All assignments and corresponding surfaces found, which allow IPS to find a feasible
solution to the complete problem (3.2), are stored along with their corresponding
cycle times. On way to exclude an assignment xi from the approximate problem
(3.5) is to add the constraint

(
xi
)T

x ≤ |T | − 1. (3.30)

By iteratively adding these constraints we find all near-optimal solutions to the
approximate problem in increasing order, i.e., starting with the optimal, then the
second best, and so on.

The optimal solution to the complete problem is probably well balanced in terms
of number of tasks assigned to each robot, since a relatively large amount of time
is spent performing the tasks. Hence, the optimal solution will be a near-optimal
solution to the approximate problem. So by letting the number k of solutions to the
approximate problem be sufficiently large, one of them will probably correspond to
the optimal solution. Here, k will be heuristically determined as, e.g., the number
of solution found within a given time period. However, a sufficiently large value
of k can be determined by considering another approximate problem; see Section
6.1. These assignments might, however, be very similar, and since the partitioning
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surface depends mainly on the robot-task assignment, i.e., not on the particular
alternatives used, instead the constraint∑

(r,t)∈Si

∑
j∈Jrt

xrtj ≤ |T | − 1, where Si :=
{

(r, t) ∈ R× T | ∃j ∈ Jrt : xirtj = 1
}
(3.31)

is used. Hence, the process will not find all near-optimal solutions but only all near-
optimal solutions that are substantially different. Using this procedure, the solutions
from the approximate problem (3.5) will eventually provide very poor solutions to
the complete problem and then the process is terminated.

An additional motivation for the use of the more restrictive constraint (3.31) is
that during the sequencing and path planning in IPS, the particular alternative of a
task is not necessarily used —the alternatives are only required to create the GVD.
Thus, this process can find an optimal solution to the complete problem (3.2) by
also modifying the partitioning surface; this will be discussed in Section 6.1.

The careful reader might note that the constraint (3.31) will add to the MPs
(3.12), (3.16) and (3.22). Luckily, the only difference to their respective subproblems
(3.13), (3.17) and (3.23) is the definition of γ̄γγ. In either subproblem, we get γ̄γγ := γ̄γγ+
ν̄ννB, where ν̄νν are the optimal values of the LP dual variables corresponding to the new
constraints and the rows in the matrix B correspond to the constraint (3.31). The
lower bound is also modified such that in both subproblems zlb := zlb +(|T |−1)1Tν̄νν.

A more substantial change occurs in the feasibility heuristic described in Section
3.3.2, because the additional constraint (3.31) is not a CNF expression but a pseudo
Boolean expression. Much work has, however, been done to translate between these
two types; see [45]. Here, a standard approach is applied. First new Boolean
variables yrt are introduced which take on the value true if xrtj is true for any
j ∈ Jrt, which is established by the CNF expression

∧
(r,t)∈Si

 ∧
j∈Jrt

yrt ∨ ¬xrtj

 . (3.32)

With these new variables, the constraint (3.31) simply states that one of them must
be false, which is establishes by adding the condition∧

(r,t)∈Si

¬yrt (3.33)

to MiniSat.
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In Section 3, an overview of the algorithm was given and the parts of the algorithm
were motivated and connected to the mathematical tools introduced in Section 2.
This Section focus on details; presenting and motivating the particular choices made
in the algorithm. Beginning in Section 4.1 with the software used, Section 4.2 pro-
vides particulars on how the sets Drtj are created. Section 4.3 gives more details on
the material presented in Section 3.3, while Section 4.4 explains the implementation
of the ideas described in Section 3.4.

4.1 Software
The implementation of the algorithm is quite complex and relies on code developed,
the commercial software IPS, and several open source packages. The overall per-
formance of the algorithm is heavily dependent on the performance of each of its
components.

4.1.1 C++

The algorithm is mainly written in C++; although major parts are composed by
libraries; see Sections 4.1.3–4.1.5. C++ was considered a preferable language since
the main software IPS has an interface to C++, but also due to its high performance.

4.1.2 Industrial Path Solutions and Lua
Industrial Path Solutions (IPS) is the software that the entire algorithm is built
upon. IPS offers a CAD-like environment, where the scene contains the robot ob-
jects and a surrounding environment, including a workpiece with the tasks to be
performed. IPS contains functions (as noted in Section 1.3) to balance the load of
the robots, sequence the tasks, and create paths for the robots between the tasks.
Collisions between robots are handled by synchronisation messages; see [46] for more
information on IPS.

The algorithm developed in this thesis uses IPS to gather information about the
geometry, to build the approximate GVD, to sequence the tasks and plan the robot
paths, and to visualise results.

The programming language Lua (see [47]) offers an interface to IPS, which in
turn is called from C++. Using this interface, internal functions of the software are
called. The most used is the distance function, which computes the distance between
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a robot and a point or object, but currently, the Lua interface lacks the possibility
to return from what point on the robot this distance is computed. This is the main
reason why the distance transform is not used in this project; recall Section 3.4.2.

4.1.3 MiniSat
MiniSat is an open-source SAT-solver, i.e., solves satisfiability problems formulated
by expressions in CNF form; recall Section 2.1. MiniSat is written in C++, it is
provided as a library, and it has an easy-to-use interface; see [32]. The solver is
based on a tree search method, including several methods for pruning the tree. For
more details on how the MiniSat solver works, see [48]. For an alternative SAT-
solver, see [49].

MiniSat is used to solve the approximate problem; recall that the constraints in
(3.5) are on CNF form. MiniSat is particularly useful in the branching procedure,
where it is desirable to find an initial column fast or to determine whether the
problem is infeasible under a specific branch constraint.

4.1.4 Coin-OR
The Common Optimization Interface for Operations Research (Coin-OR) is an open-
source software for optimization problems; see [50]. In the project two packages are
used: CLP and CBC. CLP is a simplex solver for LP problems and CBC is a branch-
and-cut solver for ILP problems. There are software that are superior to Coin-OR
in terms of performance, e.g., CPLEX or Gurobi [51, 52], but Coin-OR is used since
its accessible due to its open-source nature.

4.1.5 Voro++

To compute Voronoi diagrams (not generalised) the C++ library Voro++ is used; see
[40]. Again, the motivation to favour this over other software is since it is simple to
incorporate in the algorithm. For three or higher dimensions, usually convex hull
algorithms are suggested for computing the Voronoi diagram; see [19, p. 278]. E.g.,
the software Qhull (see [39] and Section 3.4.1) computes Voronoi diagrams using
effective convex hull algorithms, and could be used instead of Voro++. There also
exist more advanced and developed software (e.g., CGAL [53]). Voro++ is specialised
for 3D and searches an increasing neighbourhood of each generating point until all
faces of the corresponding cell are found; see [41, Ch. 4.2.2] for details.

4.2 Constraint matrix construction
In order to retrieve the set of pairwise collisions Drtj, defined in (3.1) and used in the
optimization problem (3.2), geometry measurements are computed in IPS according
to the following. For each robot r ∈ R, each task t ∈ T , and each robot position
alternative j ∈ Jrt, all other robots at all other tasks are positioned using every
alternative. For each such pair of alternatives the shortest distance between the
two robots is computed (see Figure 4.1) and checked with respect to the clearance
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condition (3.1). The set Drtj contains all cases for which the clearance condition
is violated (since it is symmetric only half of the combinations need to be tested).
Whenever two alternatives are measured to have a large enough (determined by
the robot design) clearance, then all alternatives corresponding to the same pairs of
robots and tasks are assumed meet the clearance limit.

This construction is a large preprocessing step to the algorithm which requires
several minutes of computations. An interesting development would be to employ a
lazy evaluation of the set Drtj (see Section 6.1) since this step might test for conflicts
that do not arise in the algorithm.

Figure 4.1: Screenshot from IPS illustrating how the collision constraints are
constructed. The robots are positioned at adjacent tasks and the green thick line
denotes the minimum distance between the robot objects.

4.3 Solving the approximate problem
The approximate problem (3.5), a min-max semi-assignment problem with con-
flicts constraints, was in Section 3.3 suggested to be solved using a Dantzig-Wolfe
decomposition. Three different decomposition approaches are suggested; they are
described/detailed in Sections 4.3.2–4.3.4. The branching procedure, which is com-
mon to these approaches, is presented in Section 4.3.6. The purpose of solving the
approximate problem (3.5) is to find a good approximation of the robot-partitioning
surface, described in Section 3.3. The robot-partitioning surface is mainly depen-
dent on the robot-task assignments and secondly on the robot paths between tasks.
Thus, the approximate problem only aims to find the assignment and not the se-
quence of the tasks. The problem (3.5) is a rough estimate of the exact model (3.2)
in that the cost function is approximated.

Recall that the constant crtj in (3.3) denotes the cost of an assignment. We
define these costs to be the sum of the task duration td and the time tp used by the
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shortest path from the home position to the joint configuration j in the robot joint
space. The task duration is the time a robot needs to perform the task: these times
are usually longer than the travel times for the robot paths.

The second term tp has two purposes. First, since all times are measured from
the home position, the solution to the approximate problem will favour tasks that
are close to the home position and it will in a sense separate the robots. The second
reason derives from the first: when the alternatives differ, many of them can be
discarded, thus simplifying the search for an optimal solution. Since a branch-and-
bound solver may never discard nodes if all solutions are almost equally good, this
implies that all solutions need to be tested. Note that the second term is a lower
bound on the true travel time from the home position, since neither any static
geometry, nor workpiece, nor partitioning surface, is taken into account.

There are of course many alternatives for the cost approximation (3.3), either by a
different definition of the assignment costs crtj or by using a different approximation
formula. See, Further work in Section 6.1.

4.3.1 Preprocessing by removing redundant variables
Using the objective function (3.3), many variables can be removed from the approxi-
mate problem (3.5). This since, consider two variables xrtj1 and xrtj2 . If it holds that
Drtj1 ⊂ Drtj2 and crtj1 ≤ crtj2 , then xrtj2 can be set to 0. This procedure removes a
very large number of variables from the problem which speeds up the computations
and prevents from unnecessary branching.

4.3.2 Solving MP with simple subproblem
Section 3.3.3 presents a procedure for solving the approximate problem (3.6), where
the maximum approximate cycle time (3.3) is treated as a resource to be minimised.
In short, the problem (3.5) was first reformulated into the equivalent problem (3.12),
and by a linear relaxation, the MP was retrieved. The suggested decomposition
resulted in a very simple subproblem, i.e., (3.13). The corresponding solution to
MP is retrieved as described in Section 2.3, where RMP is iteratively solved using
Coin-OR CLP which provides the optimal dual variable values, which are used in
the subproblem.

To find a solution to the IMP (3.12) and hence to the approximate problem, the
branching procedure, presented in Section 4.3.6, is used.

4.3.3 Solving MP with min-max subproblem
Motivated by findings presented in [14] it may be superior to solve the approximate
problem using the decomposition suggested in Section 3.3.4. The solution procedure
is similar to that presented in Section 4.3.2 but instead the IMP (3.16) and the
subproblem (3.17) are considered. As suggested in Section 3.3.4, the subproblem is
solved using a Lagrangian relaxation and a subgradient algorithm.

The subgradient algorithm proposed here differs a little from ordinary subgra-
dient methods, which in each iteration finds a subgradient and decides on a step
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length (see [34, Ch. 6.4]). These are very successfully in solving large-scale problems
but since the number of robots is usually rather small, another algorithm is here
proposed, sometimes referred to as a bundle method (see [34, p. 174]).

A subgradient g ∈ Rm to a concave function q : Rm 7→ R in a point µµµ0 ∈ Rm, is
a vector satisfying the relation

q(µµµ) ≤ q(µµµ0) + gT(µµµ− µµµ0), (4.1)

i.e., it defines a half-space, in which the values of q is lower than its value in the
current point. To find a subgradient of the objective function in the maximisation
problem (3.20), we use that it is the Lagrangian dual from the relaxation of con-
straint (3.18b) in problem (3.18). According to [34, p. 180] the subgradient g at
the point µµµ for component r ∈ R \ {r̃} becomes gr := −CT

r̃ xkr̃ + CT
r xkr , where xk

minimise the Lagrangian function in (3.20).
To solve the maximisation problem (3.20), i.e., the Lagrangian dual problem of

the subproblem (3.18) we introduce Algorithm 4.1, where q(µµµ) is the Lagrangian
dual function and g(x) is defined as above. It is inspired by a divide-and-conquer
strategy, where the space containing the solution µµµ∗ is iteratively reduced by com-
puting subgradients and cutting off half-space. The efficiency of such an algorithm
reduces quickly with an increasing dimension of the space (number of robots), since
then more half-spaces need to be considered in each iteration. However, experiments
showed that it is superior to a standard subgradient algorithm—e.g., divergent se-
ries step length rule described in [34, p. 173]—for this low-dimensional problem (less
than ten robots).

Algorithm 4.1 Divide-and-conquer by subgradients
1: Initialise k := |R| − 1, µµµ := 1 ∈ Rk, A := −I, and b := 0 ∈ Rk.
2: Evaluate the Lagrangian dual function q(µµµ) and let x denote the corresponding

primal solution.
3: Compute new cut Ak+1 := g(x)T and bk+1 := Ak+1µµµ.
4: Determine a search direction s := g(x) +εεε where εεε is a small random perturba-

tion.
5: Find longest feasible step d such that µ̄µµ := µµµ + ds, by checking all constraints

given by Aµ̄µµ ≤ b. If d is unbounded then set d := dmax (dmax is a parameter to
tune).

6: Update µµµ := µµµ+ d
2s and k := k + 1 . If k < kmax return to step 2.

7: Return the x with best primal objective encountered during the process.

Since each iteration introduce a new condition dividing the considered set. Each
introduced half-space will reduce the size of the considered set down to half its
original volume; hence, if the space is of dimension d the diameter is reduced by
approximately the fraction 1

2

1
d indicating that the algorithm is suitable for low-

dimensional problems (tested d ≤ 10). Experiments showed that the perturbation
εεε introduced in step 4 prevented the algorithm from adding very similar constraints
and thus not finding good solution within a reasonable value of kmax.
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4.3.4 Solving MP with conflicted subproblem
The procedure to solve the approximate problem (3.6) using the conflicted subprob-
lem was introduced in Section 3.3.5. It was noted that many redundant variables
may be removed using a technique similar to the preprocessing step described in
Section 4.3.1.

In the subproblem (3.23) each task needs to be assigned without conflicts and
the goal is to minimise the total sum of the associated variable costs, −γ̄rtj. Hence,
for every pair of variables corresponding to the same task, one of them is redundant
whenever the relations −γ̄rtj ≤ −γ̄r̄t̄j̄ and Dtrj ⊂ Dr̄t̄j̄ hold. Moreover, since each
task needs to be assigned by at least one alternative, any element of the set⋂

r∈R

⋂
j∈Jrt

Drtj (4.2)

may be discarded.
By iteratively enforcing these two conditions on every task until no more variables

can be removed from the problem, it is greatly simplified without changing the
optimal solution value.

4.3.5 Generating multiple columns
A popular and usually effective method when solving the column generation sub-
problem is to return more than one column with negative reduced cost in each
iteration; see, e.g., [54, 13, 55]. The idea is to reduce the number of times the sub-
problem needs to be solved. However, as noted in [14], if the subproblem is solved
fast, then returning only the best column might be better since it reduces the num-
ber of redundant columns in the MP, in turn reducing the complexity. It turns out
that the subproblems (3.13) and (3.17) can be solved in a much shorter time than
that spent solving the MP; preliminary results show that in either case it is more
efficient to generate a single column using either of the subproblems.

However, when solving the MP using the conflicted subproblem almost all time
is spent solving the subproblem, since the MP becomes very small. In this case it
could be beneficial to generate multiple columns in each iteration; however a simple
test showed no signs of a better performance but rather a slight decrease when
returning more than a single column. The method tested was to return the k best
solutions found in the branch-and-bound search of the subproblem; recall Section
3.3.5.1. Three different problems were tested and no value of k was better than
k = 1, in terms of time spent in each branching node.

4.3.6 Branch order
In Section 3.3.7, the branching rule was introduced and motivated. To search the
resulting tree, a rule for prioritising the branches needs to be introduced. The rule is
simply a depth first search (see [36]) which always searches the deepest node in the
tree. This allows for finding a better integral solution fast and since the tree have
a finite depth the part kept in memory will be rather small. Finding good integral
solutions are important to allow for a more efficient pruning of the tree.
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4.3.7 Improvement heuristics
Some simple improvement heuristics are implemented in different parts of the algo-
rithm.

The first is a local search heuristic aiming to find a better feasible solution to
the min-max subproblem (3.17). The neighbourhood is defined as reassigning a
single task with any other alternative, mathematically this becomes for a x ∈ S its
neighbourhood becomes

N1(x) :=

x̄ ∈ S :
∑
t∈T

∑
r∈R

∑
j∈Jrt

|x̄rtj − xrtj|
2

 ≤ 1

 , (4.3)

this is here referred to as a 1-neighbourhood (since a task is reassigned). This
search is very fast since the 1-neighbourhood is rather small (total number of robot
positions m) and evaluating the min-max objective (3.17a) and (3.17b) may be done
in O(m) time.

The second improvement heuristic is also a local search heuristic, which is applied
to the initial solution provided by MiniSat when solving the approximate problem
(3.5). Again, the 1-neighbourhood defined in (4.3) is used. However, here also the
feasibility to the conflict constraint (3.2c) and the old solution constraint (3.31)
needs to be checked, i.e.,

Ñ1(x) := {x̄ ∈ N1(x) : (3.2c) and (3.31) hold} . (4.4)

The last heuristic is a feasibility heuristic applied to any fractional solution found
for the MP (3.12), (3.16) or (3.22). It iteratively searches for the variable possess-
ing the highest fractional value. This variable is set to 1, while all other variables
corresponding to the same task as well as all variables in conflict with this variable
are set to 0. When all fractional values have been removed, there might be unas-
signed tasks, for each of which the best feasible alternative is set to 1. This process
continues until each task is assigned to a robot or no feasible solution can be found.

4.4 Approximation of GVD
In Section 3.4, several variants were introduced to approximate the GVD of the
robot objects, simultaneously positioned at each of the tasks assigned to them by
the approximate problem solution (3.5). The first algorithm is based on sampling
points on these objects and then uses a standard Voronoi diagram from Voro++ as
the approximation.

The second algorithm is based on the work in [28] and uses a distance field
to approximate the GVD. Section 4.4.2 illustrates this method and the suggested
improvement of it.

4.4.1 Approximation by points
Following Algorithm 3.2, first a number of points Pr are randomly sampled on
the robot objects Rr retrieved from the solution to the approximate assignment
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problem (3.5). The Voronoi diagram of these points is computed using Voro++;
then, every face shared between two Voronoi cells with generator points on different
robot objects will be part of the approximation of the GVD.

One thing remains in order to build these faces in IPS: the faces from Voro++
are convex polygons and need to be reduced to a set of triangles. However, since
the polygons are convex, this is done by, for a vertex, adding an edge to each vertex
with which it is not an immediate neighbour.

4.4.2 Approximation by distance field
Details on approximating the GVD using a distance field are given in Section 3.4.2.
The main part of this algorithm is written purely in C++, but all collision checks and
distance calls are done in IPS. The first step in the algorithm consists of constructing
an octree with the condition that there should be at least one empty cell separating
the robot objects; see Figure 4.2a where the empty buffer cells are most visible
between the lower two robots. Then distance calls in IPS are used to determine
which robot is the closest to each vertex in the octree. Using this information, the
octree is further subdivided to resolve any ambiguities in the topology and to ensure
that the approximate GVD is contained in empty cells; see Figure 4.2b.

(a) Initial octree. (b) Refined octree and closest objects.

Figure 4.2: Screenshots from IPS illustrating the resulting octrees. (a) The initial
octree. (b) The octree when all ambiguities have been resolved and the closest robot
objects determined.

Sections 3.4.2 and 3.4.3 offer two different interpolation procedures to approx-
imate the GVD, given the distance field. In Figure 4.3a, the result of the first
procedure is presented. The motivation for the improvement was to remove certain
artefacts; recall Figure 3.7. These artefacts are apparent where the blue and red
part of the surface meet. Here the robot to the upper right is assigned too much
space. These artefacts results from the face- and cell-midpoints added to simplify
the triangulation. But these additional points are not necessarily near the true
GVD.

In Figure 4.3b, the result of the suggested improvement is shown. The goal
of the improvement is to remove the need of additional points for creating the
triangulation, but to only use interpolation in the distance field already acquired.
This is done by first using Voro++ to get a Delaunay tetrahedralization of each cell.
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(a) The approximate GVD. (b) The improved approximation.

Figure 4.3: Screenshot from IPS illustrating the resulting approximation of the
GVD. (a) The mesh retrieved using the suggested interpolation formula. (b) The
mesh retrieved when a Delaunay tessellation is done in each cell before interpolation.

Then, the approximation of the GVD in each tetrahedron is provided by using the
same interpolation formula (3.29) as in the previous case.
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5
Tests and results

Here the results of the algorithm are presented, first in detail on the station de-
scribed in Section 1.5. For this instance, all parts of the algorithm are examined
and illustrated. Then, we compare several instances in a quantitative analysis, in
which, due to IP restrictions, only some representative numbers of the algorithm
performance are presented. In all examples, the clearance limit dc (3.1) is set to
5cm.

The algorithm was run on a CPU of 2.7GHz on a single core, except for the
commercial solver Gurobi that was run in parallel on eight cores.

5.1 Approximate problem
Here, the results comparing the three decomposition methods used to solve the
approximate problem (3.5) are compared. The method decompose the MP using
the simple subproblem (Section 3.3.3) the min-max subproblem (Section 3.3.4) the
conflicted subproblem (Section 3.3.5), respectively. To facilitate the validation of
these three methods, the Coin-OR CBC solver (Section 4.1.4) is also used to solve
the approximate problem (3.6).

One reason not to decompose the simple subproblem into multiple subproblems
is to reduce the number of columns required to solve the master problem (MP).
In Table 5.1, the number of columns needed to solve the MP using the different
strategies are presented, and compared to the number of original variables available
at each node.

Subproblem [1st, 2nd, 3rd quartile] [1st, 2nd, 3rd quartile]
of columns of variables

Simple [11, 16, 34] [96, 103, 122]
Min-max [12, 16, 21] [95, 106, 118]
Conflicted [7, 9, 13] [131, 133, 134]

Table 5.1: The left column shows the quartiles of the number of columns needed to
solve the MP in each node, using the simple, min-max, and conflicted subproblem,
respectively. The right column shows the corresponding quartiles of the number of
original variables allowed under the branching rule.

Table 5.1 not only shows that fewer variables need to be regarded but it also
reveals that, when using the min-max subproblem, there is a reduced risk of gen-
erating too many columns to solve the MP. This fact can be seen since the upper
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quartile of the number of columns is not very far from the median. However, the
largest difference appears when using the conflicted subproblem: the nodes consid-
ered more variables then by using one of the other decompositions, which indicates
that the tree is pruned more early on. The conflicted subproblem also needs to gen-
erate fewer columns in order to solve the MP; this is expected since the subproblem
is harder to solve.

To compare the efficiency of these solution methods, the achieved bounds on the
optimal value are plotted versus the time spent in the algorithm; see Figure 5.1a.
In the figure we note that a harder subproblem results in better performance, both
in terms of finding good integral solutions fast and searching the entire tree. In all
cases, the branching order was depth first search, which manifests in the behaviour
of the lower bounds: it is updated whenever the tree contains a single leaf.
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(a) Upper (solid) and lower (dashed)
bounds on the IMP using branch-and-
price with the three methods; for all
three the search ended when optimal-
ity was verified.
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(b) Bounds and the size of the branch-
ing tree during the solution of the ap-
proximate problem (3.6) with Coin-OR
ILP solver.

Figure 5.1: Illustration of the bounds achieved when using the different approaches
for solving the approximate problem (3.6). Legend entries: simple subproblem s,
min-max subproblem m, and conflicted subproblem c.

From Figure 5.1, it seems that the initial lower bounds from the min-max and
the simple subproblems are identical, but experiments showed that they are only
similar. The lower bound from the conflicted subproblem is however slightly better
than both simple and min-max subproblems. Not shown in the figure is that the
branching procedure visited roughly 1000 nodes using either the simple- or the min-
max subproblem. When using the simple subproblem almost all computation time
is spent solving the master problem, resulting in 0.1s per node in the branching
procedure. This compared to using the min-max subproblem, for which the average
computation time in each node was 0.05s, and about half of that time was spent in
the subproblem.

The approach using the conflicted subproblem only visited thirteen nodes and
spent 0.05s on average in each node. The fast computation time is mostly due to the
few number of columns generated. The few nodes visited is a result of the stronger
bound retrieved by this decomposition.
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Figure 5.1b gives a point of reference where Coin-OR CBC solver have been
used to solve the approximate problem until optimality. Coin-OR CBC verified the
optimal value of 37.45, which agrees with that of the solutions found by all three
decomposition methods, as shown in Figure 5.1a. As an additional comparison, the
commercial solver Gurobi found an optimal solution in three seconds and verified it
optimal in another five seconds. Hence, the approach of using the conflicted sub-
problem decomposition seems to compete with cutting edge optimisation software;
this by utilising problem specific properties.
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Figure 5.2: Illustration of the stability in solving the IMP using the min-max
subproblem. The quartiles (dashed lines), median (solid line), and mean (dotted
line) are computed from 200 runs.

In figure 5.1a results for solving the min-max subproblem is made from a single
run, however, since Algorithm 4.1 for solving the subproblem is non-deterministic,
also the result of the branch-and-price algorithm will be non-deterministic. Figure
5.2 illustrates the spread of the bounds gained by repeatedly solving the subproblem;
the small spread indicate that the performance is stable.

(a) Intersection free assignment from
the approximate problem.

(b) The robots’ unions used in GVD
approximation.

Figure 5.3: Illustration of an optimal solution to the approximate problem (3.6)
with a clearance limit dc of 5cm between robots. (a) The robots positioned at one
of their assigned task; which are coloured by the assignment. (b) The union of all
assignments; the minimal distance between robots’ unions is 7.16cm.

Figure 5.3 illustrates the geometry of one of the optimal solutions retrieved. Even
though the clearance limit was 5cm this solution has 7.16cm as a shortest distance
between the robots’ unions. The geometry from Figure 5.3b is used to determine
the approximate GVD.
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5.2 Generalised Voronoi diagram
Here, the three algorithms for approximating the GVD will be compared with respect
to four measures determining the quality of the mesh:

• The minimum clearance between the resulting surface and the robots’ unions
(see Figure 5.3b). Note that this should equal half of the robot-robot clearance.

• The number of triangles used to approximate the GVD, to measure the adap-
tivity of the algorithm, i.e., not using too many triangles.

• The CPU time needed to compute the surfaces.

• A visual examination to determine whether the approximations resemble the
true GVD or not.

Starting by examining the performance of Voro++, which has a degree of freedom
of how well the GVD should be approximated; that is the number of points sampled
on the robot unions’ surfaces. With sufficient amount of points the approximation
would be exact.

These results are presented in Figure 5.4. Note, however, that these results are
dependent on the minimum robot-robot clearance in the solution. If the robot-
robot clearance is small a larger number of points are required, e.g., in a solution
with a minimum robot-robot clearance of 10cm, 10000 points was sufficient to give
a minimum surface-robot clearance of 4cm, but in the Figure 5.4a the minimum
robot-robot clerance where only 7cm and then 100000 was need to get a surface-
robot clearance of 3cm.
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Figure 5.4: Illustration of the performance Voro++ used to approximate the GVD,
where # points being the number of points randomly sampled on each robot union.
In each of the figures, the middle line indicates the median outcome and the coloured
area indicates the first and the third quartile of the outcome, as estimated over ten
runs. (a) The dashed line denotes half the robot-robot clearance. The figures
illustrated in the diagrams correspond to the solution illustrated in Figure 5.3; the
resulting GVD using 60000 points is illustrated in Figure 5.5.

Recall Figure 4.3, which illustrates the result of applying the approximation by
the distance field approach and the suggested improvement of it. The corresponding
Figure 5.5 shows the result (using the same robot geometry) instead using Voro++
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and 60000 points on each robot. Note that the artefacts observed in the triangula-
tions using the distance field approach (where some robots where assigned to much
space) is not present in the triangulation from Voro++.

Figure 5.5: The resulting surface from creating the Voronoi diagram of 60000
points randomly sampled on each robot union, illustrated in Figure 5.3b, then only
using the part of resulting Voronoi diagram that separates the unions. For details,
see Algorithm 3.2. Voro++ is used to compute the Voronoi cells.

Table 5.2 presents the time consumption of the GVD approximation using a
distance field and its improvement. Recall that the improved version spent extra
effort only to create a good mesh in which to interpolate. In the steps measure and
resolve the major time is spent by IPS for computing point-object distances and
in the measure step the closest robot object is determined for about 10000 octree
vertices, using Algorithm 3.4.

Component Build octree Measure Resolve Mesh Improved mesh
Elapsed time [s] 8.98 5.41 12.16 0.98 2.69s

Table 5.2: The time spent approximating the GVD using the distance field ap-
proach (Section 4.4.2). The column improved mesh replaces the column mesh in the
suggested improvement. The total time is presented in Table 5.3.

In Table 5.3, the three approaches are compared in terms of clearance, number
of triangles, and time to compute. In terms of speed, Voro++ is superior, but it is
inferior in terms of precision and number of triangles used. Recall the choice made to
not implement a distance transform, Section 3.4.2.2, using this transform the results
from the distance field approach and from Voro++ would be similar, see Section 6.1.
Moreover, the suggested improvement, which aimed to remove the artefacts present
in the approximation by distance field approach, is slightly worse than the original
in all aspects of Table 5.3.
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Minimum # triangles CPU
clearance [mm] time [s]

Voro++ (60000 points/robot) 25.7 42268 19
Approx. using distance field 32.8 15862 28

Improvement of distance field approx. 29.0 18410 30

Table 5.3: Performance of the three approaches applied to the assignment in Fig-
ure 5.3b. The robot-robot clearance in this case 71.6mm and hence without any
approximation the GVD should have a clearance of 35.8mm.

5.3 Algorithm performance
The complete algorithm described in Section 3.2 is here evaluated. First, results for
the example station introduced in Section 1.5 are presented; then we present some
quantitative results from the algorithm tested on some other stations.

5.3.1 Tests on the example station
There are four major components in the algorithm: construction of the conflict
constraints; solution of the approximate problem; approximation of the GVD; se-
quencing and path planning by IPS. The time spent in each algorithm component,
for the example case, is presented in Table 5.4.

Component Constraint matrix Approximate problem GVD IPS
Elapsed time [s] 248 0.5 28 ~300

Table 5.4: The time spent in each algorithm component during the first iteration
(recall Figure 3.1), for the example station illustrated in Figure 5.3a. The approx-
imate problem is solved by decomposing the IMP with the conflicted subproblem.
The GVD is approximated using the distance field without the suggested improve-
ment.

For the example station described in Section 1.5, the approximate GVD rarely
makes the complete problem infeasible. Figure 5.6a shows a feasible path to be
added to the approximate problem and Figure 5.6b show the resulting, feasible GVD
approximation. The feasibility of the path is ensured by adding conflict constraints
associated with each task (see Section 3.5.1). For this particular case, the new
solution contains the assignment corresponding to the ensured path.

The performance of the second feedback procedure (see Section 3.5.2), which
restricts the old solution and iteratively resolves the approximate problem to find
new and possibly better solutions, is presented in Figure 5.7. It is apparent that
the approximation of the complete problem is rather good, since there seems to be
a correlation between the approximated and computed cycle time series, but rather
many solutions are required before the approximate cycle time becomes unreason-
ably high. Since only the GVD—and no other partitioning surface—is considered,
we cannot verify that the solution found is optimal to the complete problem (see
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(a) The feasible path to be added. (b) The new feasible GVD approxima-
tion.

Figure 5.6: Conflict constraints added to the approximate problem, where the
entire path must satisfy the clearance limit. (a) A snapshot of the robot on the
added path to the inaccessible task. Note that the robot intersects the current GVD
approximation, illustrated by black lines. (b) The solution and the approximate
GVD to this new problem. Note that the lower left robot, magnified in (a), receive
more space due to the added path constraint.

Section 3.5.2). Nevertheless, assuming that the GVD equals the optimal partitioning
surface, the solution found seems to be near optimal in the approximate problem.
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Figure 5.7: The approximate cycle time and the cycle time as computed by IPS
for every solution in the iterative process (Figure 3.1). The dotted line is a linear
least square fit to the IPS cycle times. The algorithm applied to the example station
illustrated in Figure 1.1.

Figure 5.7 illustrate how the solutions to the approximate problem are found in
the order of increasing objective value. An additional check that indeed all solutions
were found, the same procedure was done in Gurobi, producing the same solutions.
Hence, the algorithm passes this stability test.

We conclude the results for this example station: For our approach, using the
partitioning constraints, the shortest cycle time found was 35.11 seconds. For the
current approach, in which IPS uses a synchronisation of the robot movements to
prevent collisions, the shortest cycle time found was 33.53 seconds (which should be
less, since the partitioning constraints are relaxed). Hence, applying our algorithm
yields partitioned robust robot movements at the cost of an increased cycle time by
slightly less than 5%.
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5.3.2 Tests on an additional set of stations
Finally, the algorithm is tested on an additional set of stations. Table 5.5, gives
some statistics of these stations and on the performance of the algorithm on these
stations. Station 1 is the reoccurring example, while stations 2 and 3 are new. Here
only the number of robots, task, and alternatives of the stations can be stated,
this since they are in use in industry and there is an economical motivation for a
non-transparency.

Problem data/statistics Station 1 Station 2 Station 3
#Robots 4 4 10
#Tasks 48 43 201
#Alternatives 1092 1825 4882
Time in approx. problem/iter [s] 0.5 57 172800
Time in GVD approx./iter [s] 28 43 633
#iterations 100 100 1
Cycle time increase [%] 4.6 2.6 -1.0
slope [s/iter] 0.038 -0.002 -

Table 5.5: Data and result statistics for the three stations to which the algorithm
was applied. Cycle time increase refers to the cycle time achieved with the partition
constraint compared to using IPS, without the partitioning constraint. The solution
of the approximate problem for station 3 was stopped after 172 800 seconds (48h),
without an optimal solution found. Slope denotes the derivative of the line fitted
to the cycle times vs. solution number, cf. Figure 5.7. Since only one iteration was
done for Station 3 no slope could be computed.

From Table 5.5 we see that the algorithm is rather successful in finding parti-
tioned solutions with small increases in cycle time, compared to the corresponding
synchronised solutions. A notable failure is that the algorithm failed to search the
entire tree on Station 3. The reason for this failure is that station 3 consists of three
separate robot cells constructing a single workpiece. This means that there are too
many solutions whose approximate solution value differ too little and hence it is
not possible to prune the tree at an early enough stage. Thus when working with
multiple separate robot cells the approximate cost is too similar between different
solutions, despite the attempt made in Section 4.3. However, by using Gurobi we
were able to verify that the solution found by the branching procedure is optimal.

Station 2 contained fewer conflicts (due to a different robotic tool) and hence
more branches needed to be visited in order to search the tree; this is the cause of the
long solution time for the approximate problem. The different tool —allowing for
more non-conflicting alternatives— is also the cause of the longer time to compute
the GVD, which contained more cells and both the cell intersection and distance
computation were somewhat slower.

A last thing to note for station 2 is the slightly negative slope, which indicates
that better solutions may still be found and that many more iterations are required
before a solution can be considered close to optimal. This is also understood from
the fact that the best solution was found on iteration 96. This since, in station 2, the
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duration of performing a task is much less and thus travel time becomes dominant.
In this case, the current approximation of the objective function is not enough good,
resulting in the negative slope.

The cycle time decreases in station 3 which, to the best of our reasoning, has
three possible explanations:

• Station 3 is composed by three separate robot cells with the workpiece moving
between them, allowing some tasks on the workpiece to be reached by several
robots. This yields an extra degree of freedom in the task sequencing problem
that decreases the impact of bad partitions.

• In a synchronised robot program, a robot waits until the planned path is clear.
A faster but longer collision-free path (with zero waiting time) may, however,
exist.

• Partitioning a robot station into one distinct volume per robot results in a com-
putationally easier path optimization problem (to be solved by IPS). Hence,
for very large problem instances, the partition facilitates the search for good,
feasible solutions.
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6
Conclusion

We have considered the problem of minimizing cycle time while avoiding collisions
within a robot station consisting of multiple industrial robots that collectively should
cover a set of tasks on a workpiece. In order to prevent the robots from colliding
we have investigated an alternative to synchronise the robot programs by adding
synchronisation/interlocking signals. The alternative approach was to partition the
space within the station, separating the robots. To achieve this, we solved an ap-
proximate problem using a Dantzig-Wolfe decomposition, yielding an assignment of
the tasks to the robots. Using this assignment, a partition was made by the GVD
concept and using this also the sequence and the paths between the tasks could be
planned using IPS. This process was then iterated, in each new iteration new con-
straints were added to the approximate problem to prevent infeasible and previous
solutions.

From the results, we conclude that this algorithm is successful in partitioning the
space while keeping the cycle time within acceptable limits. In addition, since the
conflict constraint only allow a few good solutions, the idea to repeatedly solve an
approximate problem in order to find candidate solutions to the complete problem
seems successful. For very large problem instances consisting of several production
cells, implying that many good candidate solutions exist, our algorithm still performs
well. This is due to the fact that tasks may then be swapped between cells, resulting
in less impact from bad partitions.

We also showed how the min-max semi-assignment problem with conflict con-
straints can be solved using a branch-and-price procedure; the best decomposition
of the optimization problem was to keep the load balancing in the MP and include
the conflict constraints in the subproblem. This procedure was shown to be more
efficient than using a standard branch-and-cut solver, and slightly more efficient
than a cutting edge branch-and-cut solver. For very large problem instances, the
solution found to the approximate problem was verified optimal by Gurobi, but not
by our algorithm. Hence, there is a potential of development of our algorithm for
the approximate problem.

We observed that the generalised Voronoi diagram worked well in a partitioning
algorithm and that the Voronoi cells can be computed within a reasonable amount
of time. Even though the computation time for the ordinary Voronoi diagram is
superior to using the GVD, we prefer the distance field for approximating the GVD,
since it is better adapted for closely spaced objects and since the use of the distance
transform may also speed up the computations.
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6.1 Future work

The algorithm developed in this thesis does not guarantee that a feasible solution
is found even if the complete problem (3.2) has a solution, due to the fact that a
particular path is added by the feedback procedure. A remedy of this weakness is
to add a path for one robot that interferes as little as possible with the paths of the
other robots, or to add a path that is in the solution to the complete problem.

The iterative process prevents all similar solutions —identical assignment of the
tasks to the robots but disregarding the specific alternative— to occur in the approx-
imate problem, this with the argument that IPS will consider all alternatives feasible
by the computed GVD. However, the approximate GVD is computed from the spec-
ified alternatives and hence the solution from IPS will depend on the particular
assignment found in the approximate problem. This should somehow be prevented,
either by brute force; only preventing the particular solution found in each iteration
from reoccurring, or by not using the GVD concept and instead finding an optimal
partitioning surface for a robot-task assignment without any alternative specified.

The GVD is here assumed to be the optimal partitioning surface for a solution to
the approximate problem. This might not be true and the cycle time might reduce
if a better surface could be generated. An idea is to iteratively improve the surface,
e.g., by finding weights in a weighted Voronoi diagram that minimise the cycle time
or by iteratively recompute the GVD for the complete cycle, using the swept robot
volumes as objects to partition.

One suggested improvement is to use a better approximation of the complete
problem, e.g., by defining crtj, as the true travel times. Another interesting aspect
is to use some other measure than the distance between the home position and the
tasks. This could maybe be done by using another model, e.g. a minimum spanning
tree, where the edges represents paths between tasks.

If an alternative approximation of the complete problem yields a tight lower
bound on its optimal value, then the partitioning and evaluation of candidate solu-
tions should continue until the lower bound exceeds the best upper bound for the
complete problem. This might be achieved by using another model of the complete
problem (3.2), e.g., some vehicle routing model [56].

An additional gain of using a less approximate model of the complete problem
would be that fewer candidate solution would be sufficient, since a better model
would preferable provide better solutions. This is most interesting for problem
instances with short task duration time, where the current approximation performs
poorly.

A minor issue in the current algorithm, is the substantial preprocessing step of
computing the conflict constraint matrix. In this step all alternatives to perform a
task is compared with all other alternatives to perform any other task with another
robot, to check whether the robot-robot clearance limit is satisfied. Probably not all
of these alternatives are needed, and it would be interesting to introduce some lazy
evaluation, to test the limits when needed. This, however, requires some revision
of the solution procedure for the approximate problem in Section 3.3 since there all
conflicts constraints are assumed to be known when specifying the subproblem.

Our approximation of the GVD using the distance field diverts from the algo-
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rithm suggested by [28], which uses the distance transform to determine the distance
to the robot unions. This is mainly due to a current lack in the IPS interface and it
is an interesting development of our algorithm, since it will approximate the GVD
in much less time than the current version.

As a last remark, in this entire project the robot is assumed to be stationary
when performing the task. For other types of tasks, which requires a sweeping
motion during the task operation, an idea is to incorporate these tasks in the existing
algorithm by letting the volume swept by the robots during the task operation define
the object that should satisfy the clearance limit in the conflict constraint of the
task alternative.
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