
THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY

Optimizing and Approximating Algorithms for the
Single and Multiple Agent Precedence Constrained

Generalized Traveling Salesman Problem

Raad Salman

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2017

Optimizing and Approximating Algorithms for the Single and
Multiple Agent Precedence Constrained Generalized Travel-
ing Salesman Problem
Raad Salman

Copyright c© Raad Salman, 2017.

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 00

Fraunhofer-Chalmers Research Centre for Industrial Mathematics
Department of Geometry and Motion Planning
Chalmers Science Park
SE-412 88 Gothenburg, Sweden
Phone: +46 (0)31-772 4254
Email: raad.salman@fcc.chalmers.se

Printed in Gothenburg, Sweden 2017

In loving memory of Hassan Salman.

Abstract

In the planning phases of automated manufacturing, generating efficient programs for
robot stations is a crucial problem which needs to be solved. One aspect of the program-
ming is the optimization of task sequences, such as series of welds or measuring points,
so that the cycle time is minimized.

This thesis considers the task sequencing problem separately from the other prob-
lems related to robot station programming such as motion planning and collision avoid-
ance. The stations may have a single robot or an arbitrary (but predetermined) number of
robots. The robots are heterogeneous with respect to their ability to perform the different
tasks, and may have several movements and angles to choose from when performing a
task. Furthermore, some processes require that the tasks are performed within some par-
tial order. This may cause delays when there are more than one robot at a station. The
task sequencing problem is then modeled as the Precedence Constrained Generalized
Multiple Traveling Salesman Problem.

A metaheuristic algorithm based on Ant Colony Optimization is considered in con-
junction with several different local search heuristics. The local search neighborhoods
are analyzed with respect to the notion of improvement and induced delays due to prece-
dence constraints between robots. In the single robot case, the HACS algorithm is shown
to find solutions at least within 10% of the optimum on average, often within a couple
of seconds. For stations with multiple robots, the results indicate that the local search
procedure is good at improving solutions but that it becomes very computationally de-
manding when applied to instances with a large number of precedence constraints.

Additionally, an exact branch-and-bound based algorithm is presented for single
robot stations. A novel branching method is developed, a pruning technique used for
a related problem is generalized, and a new way of computing an assignment problem
based bound is evaluated. The algorithm is able to solve some medium sized problem
instances (around 50 tasks) within 24 hours. Many of the smaller problem instances are
solved within seconds.

Keywords: asymmetric generalized multiple traveling salesman problem; precedence
constraints; sequential ordering problem; vehicle routing problem; metaheuristic, local
search heuristic; ant colony optimization; edge exchange; branch and bound; dynamic
programming; SOP; GTSP; mTSP; VRP; PCGTSP; PCGmTSP

i

ii

Acknowledgments

First and foremost, I would like to thank my supervisors Fredrik Ekstedt
and Peter Damaschke for all the rewarding discussions and guidance during this
thesis work. Thanks to Fraunhofer-Chalmers Centre (FCC) and the Department
of Mathematical Sciences at Chalmers for giving me the opportunity to work on
this project. I would also like to extend a special thanks to Domenico Spensieri,
Johan S. Carlson, and everyone else at FCC who has supported me with their
involvement.

Finally, thanks to all of my friends and especially my family whose love and
support has been indispensable during these last two years.

Raad Salman
Göteborg, October 2017

iii

iv

List of Publications

• Paper I. R. Salman, J.S. Carlson, F. Ekstedt, D. Spensieri, J. Torstensson,
R. Söderberg, An industrially validated CMM inspection process with
sequence constraints, Procedia CIRP (2016), pp. 138–143.

• Paper II. R. Salman, F. Ekstedt, P. Damaschke, Branch-and-bound for
the Precedence Constrained Generalized Traveling Salesman Problem,
Submitted (2017).

• Paper III. F. Ekstedt, R. Salman, D. Spensieri, A Hybridized Ant Colony
System Approach to the Precedence Constrained Generalized Multiple
Traveling Salesman Problem, Manuscript (2017).

v

vi

Contents

Abstract i

Acknowledgments iii

List of Publications v

1 Introduction 1
1.1 Background . 1
1.2 A Review of Methods for TSP Variants 4
1.3 Contribution . 7
1.4 Outline . 8

2 Problem Descriptions 9
2.1 Single Agent PCGTSP . 9
2.2 Multiple Agent PCGTSP . 9

2.2.1 Disjunctive Graph . 11

3 Approximating and Solving the Single Agent PCGTSP 13
3.1 Hybridized Ant Colony System (HACS) 13

3.1.1 Vertex Selection . 15
3.1.2 Path Preserving 3-opt 16

3.2 Branch-and-Bound Algorithm 18
3.2.1 Bounding Methods . 20

3.2.1.1 An Alternative Assignment Problem Bound . 23

vii

viii Contents

3.2.2 History Utilization . 24

4 Approximating the Multiple Agent PCGTSP 25
4.1 Hybridized Ant Colony System (HACS) 25
4.2 Local Search Procedure . 26

4.2.1 Vertex Selection . 28
4.2.2 Path Preserving 3-opt 28
4.2.3 String Move . 29
4.2.4 Delay Removal . 31

5 Results 33

6 Conclusions and Future Work 37

7 Summary of Publications 39
Paper I - An industrially validated CMM inspection process with se-

quence constraints . 39
Paper II - Branch-and-bound for the Precedence Constrained Gener-

alized Traveling Salesman Problem 39
Paper III - A Hybridized Ant Colony System Approach to the Prece-

dence Constrained Generalized Multiple Traveling Salesman
Problem . 40

References 41

Paper I 47

Paper II 55

Paper III 73

1. Introduction

1.1 Background

As computer aided product development and manufacturing are increasingly
becoming the norm, efficient programs which reduce the use of resources such
as energy and material are now more important than ever. From design to
planning, and finally manufacturing, numerous mathematical problems must
be overcome when creating a robust computer aided process for product real-
ization.

The software Industrial Path Solutions (IPS) is a virtual simulation tool ca-
pable of modeling and optimizing many aspects of automated manufacturing
processes. Such a process is the generation of efficient robot programs where
the problem of task sequencing naturally arises. The task sequencing problem
consists of determining the order of tasks on a robot station such that the total
time for finishing the tasks (known as the cycle time) is minimized. The sta-
tions may have several robots working on the same object simultaneously and
be such that the robots have either shared or unshared workspaces.

In the IPS software, paths and movements for the robots are computed sep-
arately from the task sequencing in the path planner, and are fed as data into the
task sequencing algorithm in the form of distances between tasks. Since fea-
sible collision-free robot paths are very computationally demanding to obtain,
IPS uses an iterative process where the path planner calculates only a subset of
the paths by using information from the task sequence optimization algorithm.
The process begins by finding a solution to the task sequencing problem given
the shortest possible robot paths between tasks without considering any obsta-

1

2 Chapter 1. Introduction

cles. The sequence is then sent to the path planner which checks how the robots
should move in order to feasibly execute it, taking collisions into account. This
results in new (potentially longer) distances between tasks which are sent to the
task sequencing algorithm which finds a new solution etc. This process may be
stopped when some minimum threshold for improvement is not met, or after a
fixed number of iterations.

Figure 1.1: Simulation in IPS of a station with two coordinate measuring ma-
chines working on a car body.

The distances between tasks may become several times as long after finding
feasible robot paths, and generally the path planning affects the cycle time much
more than the task sequencing. Additionally, optimizing the sequence of tasks
with an incomplete set of properly planned paths is in itself an approximation
of the optimal solution. Therefore, spending large amounts of computational
power on finding an optimal task sequence in each iteration is normally not
desired, and heuristic algorithms are utilized more often. However, exact opti-
mization methods may still be interesting as solvers if they are sufficiently fast,
and as tools that can evaluate the performance of heuristics.

This thesis presents algorithms for finding approximate and optimal solu-
tions to the problem of sequencing tasks on robot stations with one or several

1.1. Background 3

automated robots such that the cycle time of the whole process is minimized.
The many degrees of freedom of the robots enable tasks to be performed in
many different ways. Moreover, tasks may be constrained to be performed in
some partial order as to ensure the integrity of the process and/or the quality of
the product. This problem is modeled as a version of the famous combinatorial
optimization problem known as the Traveling Salesman Problem (TSP).

Normally the TSP is defined as the task of finding the minimum cost Hamil-
tonian cycle (or tour) in an edge-weighted graph but many variations with extra
constraints or complications have been studied. The asymmetric case (ATSP)
allows costs between vertices to be asymmetric and is defined on a directed
graph. In the Generalized TSP (GTSP) the vertex set is partitioned into a family
of disjoint and non-empty subsets. The GTSP tour is then required to visit ex-
actly one vertex in each subset such that it minimizes the costs of the edges that
are traversed. The Precedence Constrained ATSP (PCATSP), and the equivalent
Sequential Ordering Problem (SOP), consists of finding a directed tour such that
a partial order defined by pairwise precedence relations is respected. The Mul-
tiple TSP (mTSP) requires a fixed or variable number of tours such that each
vertex is visited exactly once. Variations of the mTSP include assumptions on
the number of starting points for the travelers and the objective of the problem.
Most often the two objectives considered are minimizing the total traveling cost
or minimizing the cost of the longest tour, also known as the minmax objec-
tive. A problem closely related to the mTSP is the Vehicle Routing Problem
(VRP) [48].

The problem that this thesis considers is modeled as the Precedence Con-
strained Generalized Multiple TSP (PCGmTSP) with a fixed number of trav-
elers, one starting point per traveler, and with the minmax objective. The sin-
gle robot (or agent) case will be referred to as the PCGTSP, even though it
is a special case of the PCGmTSP, as the difference in problem structure is
enough to warrant treating it separately. The terms PCGmTSP and multiple
agent PCGTSP will also be used interchangeably.

4 Chapter 1. Introduction

(a) A feasible ATSP
tour.

(b) A feasible GTSP
tour.

(c) A feasible mTSP so-
lution with two travelers.

Figure 1.2: Various TSP variants.

While the PCGTSP and the PCGmTSP can be seen as aggregates of other
well-studied problems, they themselves pose their own set of challenges as the
methodologies for tackling the different related problems tend to clash. As an
example, many effective GTSP heuristic methods rely on the fact that the edges
can be exchanged very freely in any given solution, while SOP heuristics tend to
exploit that the precedence constraints severely limit the edge exchange neigh-
borhoods and the solution space in general. However, because the PCGTSP
and the PCGmTSP incorporate the same or similar characteristics as the GTSP,
the SOP/PCATSP, the mTSP, and even the ATSP, it is still crucial to understand
how these related problems have been solved. To that end, the next section pro-
vides an overview of asymmetric TSP variants related to the PCGTSP and the
PCGmTSP, and known methods for solving them.

1.2 A Review of Methods for TSP Variants

Algorithms with the purpose of solving optimization problems, in particular the
TSP and variants thereof, can be mainly classified as either exact or heuris-
tic. An exact algorithm is guaranteed to find an optimal solution or a solution
within some error of the optimal solution, while a heuristic algorithm gives no
guarantee on how good the produced solution is. However, for a hard problem
such as the TSP, using exact algorithms for solving particularly large problem
instances can easily become computationally impractical. One says that a prob-
lem instance is solvable by an exact algorithm if the algorithm finds an optimal
solution and terminates within some reasonable time frame, usually 24 or 48

1.2. A Review of Methods for TSP Variants 5

hours.
One of the most used types of exact algorithms for TSPs, and combinato-

rial optimization problems in general, is the branch-and-bound algorithm. For
TSPs, the bounding procedure is commonly one of three types: relaxing inte-
ger constraints on variables in an integer linear programming (ILP) formulation
and then solving the resulting linear programming (LP) problem, relaxing the
vertex outdegree constraints and solving the resulting minimum spanning ar-
borescence problem (MSAP), or relaxing the subtour elimination constraints
and solving the resulting assignment problem (AP). Bounding methods based
on the MSAP or the AP often involve Lagrangian relaxation coupled with some
subgradient method.

(a) A spanning arborescence. (b) A cycle cover.

Figure 1.3: Feasible solutions to the MSAP and AP in a graph.

Branch-and-bound algorithms based on LP relaxations are often augmented
with some special purpose cutting plane procedure which adds additional valid
constraints to the subproblems in order to tighten the lower bound produced
by solving the LP problem. These so called branch-and-cut algorithms can be
very powerful but require an extensive investigation of the feasible region of the
problem at hand [7, 19, 20, 43]. Branch-and-cut algorithms have been proposed
for the ATSP, SOP, the symmetric GTSP, and the mTSP in [22], [3], [21], and [8]
respectively.

Spanning tree based bounds were first proposed for the TSP in [30, 31]

6 Chapter 1. Introduction

and later evaluated for the asymmetric case and compared to AP based bounds
(see [6]) in [49]. In the case of the GTSP and the PCATSP, the additional
constraints complicate the resulting problems when relaxing the vertex outde-
gree constraints or the subtour eliminations constraints. For the GTSP it has
been shown in [38] and [28] that the MSAP and the AP defined on a parti-
tioned vertex set are NP-hard problems. For the PCATSP and the SOP the
precedence constraints severely complicate the problem definitions. However,
AP based bounds have still been considered for the GTSP in [39], where the
GTSP is appropriately relaxed in order to obtain a regular AP. In [18] and [44],
bounds based on the MSAP are considered for the SOP where the precedence
constraints have been relaxed. For the mTSP, bounds based on polynomially
solvable variations of the AP and the MSAP have been considered in [26], [1],
and [24].

The dynamic programming approach (first proposed in [29]) to solving TSP
variants is much less common but is still considered as a viable option. It has
been shown that the PCATSP is solvable in linear time given a special structure
on the precedence constraints [5]. Because of the extreme memory require-
ment of the dynamic programming algorithm, normally only smaller problem
instances are solvable. However, so called state space relaxation schemes which
limit the state space of the dynamic programming algorithm have been proposed
for both the ATSP and the SOP [9, 14, 15, 35]. The resulting bounds can then
be utilized within some branch-and-bound framework.

Since the TSP is such a hard problem to solve, there is a long tradition of
developing effective heuristic algorithms. Local search heuristics are a type of
heuristic which take a feasible solution and attempt to improve it through some
problem specific manipulation. For the TSP, one of the most widely used types
of local search heuristics are edge exchange based heuristics, also known as
k-opt and k-exchange. A very popular adaptive edge exchange heuristic is the
Lin-Kernighan heuristic [37] which was made more efficient in [32] and [33].
This heuristic has been generalized and applied to the GTSP in [36] and [34],
and to the mTSP in [41]. An efficient and more restricted form of edge exchange
heuristic has been developed for the SOP in [23].

So called metaheuristics are a very popular type of heuristic algorithms.
They make very little assumptions about the optimization problem itself and
can therefore be used as a higher level framework for a large class of prob-

1.3. Contribution 7

lems. They are often stochastic and inspired by natural phenomena such as ant
colonies, swarm behavior, and evolution, to name a few. Normally, the meta-
heuristics are utilized as a guided sampling of the solution space, and in con-
junction with some local search heuristic. There is an abundance of literature
on metaheuristic approaches to TSP variants. For some prominent examples
see [2, 23, 27, 45–47].

Research on the PCGTSP is fairly scarce. In [12], the PCGTSP was trans-
formed into an equivalent PCATSP and then a known SOP heuristic was uti-
lized. A dynamic programming approach which extends the results found in [5]
has been presented in [13]. A heuristic approach to the PCGTSP with some ex-
tra constraints has been considered in [16] and [17]. A metaheuristic approach
was developed and compared to a deterministic edge exchange based heuristic
and a generic exact solver in [42].

For the multiple agent case, seemingly only [25] has treated the PCGmTSP
as defined in this thesis. However, only two agents are considered, and some
extra spatial and logical constraints are imposed. In order to solve the problem a
mathematical model is presented, and a heuristic based on a large neighborhood
search is evaluated.

1.3 Contribution
The contributions in this thesis are centered around three algorithms. A meta-
heuristic approach to solving the PCGTSP (Paper I), an exact method for the
PCGTSP (Paper II), and a metaheuristic for the PCGmTSP (Paper III). For the
main contributions in each paper see the lists below.

Paper I:

• An Ant Colony Optimization based metaheuristic for solving the PCGTSP.

• An adaptation of the local search heuristic developed in [23].

• An introduction to an industrial process where the PCGTSP naturally
arises.

8 Chapter 1. Introduction

Paper II:

• A first branch-and-bound based algorithm for solving the PCGTSP.

• A generalization of the history utilization pruning technique presented
in [44].

• A new branching technique applicable to the GTSP where group se-
quences are enumerated and shortest path calculations are utilized.

• A novel assignment problem based bound for the GTSP.

• An experiment based evaluation of different bounding methods for the
PCGTSP.

Paper III:

• An Ant Colony Optimization based metaheuristic for solving the PCGmTSP

• Adaptations of known local search heuristics which have been utilized in
algorithms for the VRP, the SOP, and the machine scheduling problem.

• An introductory analysis of the nature of common TSP and VRP local
search neighborhoods when applied to the PCGmTSP with the minmax
objective.

1.4 Outline
Chapter 2 formally describes the PCGTSP, the PCGmTSP, and the principal
notation for the rest of the thesis. Chapter 3 presents the algorithms for the
PCGTSP. Section 3.1 describes the metaheuristic approach and Section 3.2 de-
scribes the exact branch-and-bound based algorithm. The metaheuristic ap-
proach to the PCGmTSP and the additional local search heuristics are presented
in Chapter 4. Chapter 5 contains some additional results not found in the ap-
pended papers. In Chapter 6, some concluding remarks and suggestions for
continuing the work of this thesis is given.

2. Problem Descriptions

2.1 Single Agent PCGTSP

Let G = (V,E) be a directed edge-weighted graph with vertex set V , |V | = n,
directed edge set E ⊆ V ×V , and edge costs cij . Let V1, . . . , Vm be a partition
of V , i.e. a family of subsets of V such that Vp ∩ Vq = ∅ for p, q = 1, . . . ,m,
p 6= q, and

⋃m
p=1 Vp = V . Each subset in the partition is called a group. Let

M = {1, . . . ,m} be the set of group indices and let g(v) ∈ M be the index of
the group in which the vertex v is contained. So, v ∈ Vg(v) always holds. Let
the directed acyclic graphG′ = (M,Π), Π ⊂M ×M , define a partial ordering
of the groups. This partial ordering is what defines the precedence constraints.
These constraints dictate that if (p, q) ∈ Π, then Vp must be visited before Vq .
Any precedence relation induced by transitivity is assumed to be included in Π.
Which is to say, if (p, q) ∈ Π and (q, r) ∈ Π, then (p, r) ∈ Π. Assume that V1
is a predetermined start group.

The Precedence Constrained Generalized Traveling Salesman problem is
then to find a cycle in G, hereby known as a tour, such that it starts at V1, visits
exactly one vertex in every group in an order which respects the precedence
constraints, returns to V1, and minimizes the total cost of all traversed edges.

2.2 Multiple Agent PCGTSP

As in the single agent case, assume a directed edge-weighted graphG = (V,E)

with a partitioned vertex set, V1, . . . , Vm, and group index setM = {1, . . . ,m}.

9

10 Chapter 2. Problem Descriptions

Now let A be a predetermined number of travelers, hereby known as agents,
which are to share the task of visiting exactly one vertex in each group. Assume,
without loss of generality, that each vertex v ∈ V has been assigned a unique
agent which is able to visit it, and denote this by Λ(v). In other words, agents
may never have access to the same vertex. However, agents will be allowed
to have access to the same groups. Let Λ(s, p) ∈ {1, . . . , A} denote the agent
which visits group Vp in a solution s.

Let c(e)ij be the time it takes to traverse edge (i, j), and let c(v)i be the time it

takes to process vertex i. Furthermore, let c̃ij = c
(e)
ij + c

(v)
j . Whenever vertex

processing costs are present in a single agent setting one can simply add them
to the incoming or outgoing edge costs and then discard them. However, in a
multiple agent setting it will be necessary to separate the start and end times of
every vertex visited in a solution. Let Tsta(s, p) and Tend(s, p) be the start and
end time, respectively, of the processing of the group Vp in a solution s.

For each agent a = 1, . . . , A, assume that g0(a) is the index of a prede-
termined start group for the tour of agent a. So for all a = 1, . . . , A, and any
feasible solution s it must hold that Λ(s, g0(a)) = a and Tsta(s, g0(a)) = 0.

As before, define the precedence constraints by a directed acyclic graph
G′ = (M,Π). However, since the PCGmTSP requires A disjoint tours, the in-
terpretation of what it means to fulfill the precedence constraints needs to be re-
vised. A natural interpretation of precedence constraint fulfillment is to require
that Tend(s, p) ≤ Tsta(s, q) for every (p, q) ∈ Π. For precedence constraints
with (p, q) ∈ Π and Λ(s, p) = Λ(s, q), so-called intra agent constraints, this is
a correct and equivalent interpretation as in the single agent case. But when one
has (p, q) ∈ Π and Λ(s, p) 6= Λ(s, q), so-called inter agent constraints, labeling
any solution where Tend(s, p) > Tsta(s, q) as infeasible is unnecessary. Instead,
assume that whenever such a scenario occurs, a delay is added to Tsta(s, q) such
that Tend(s, p) = Tsta(s, q).

The Precedence Constrained Generalized Multiple Traveling Salesman prob-
lem is then to find A disjoint tours which respect the precedence constraints
according to the definition above, and cover each group exactly once such that
the length of the longest tour is minimized.

2.2. Multiple Agent PCGTSP 11

2.2.1 Disjunctive Graph

In order to better understand how inter agent constraints affect a PCGmTSP
solution, in particular if and how delays are incurred, a disjunctive graph repre-
sentation of the solution will be utilized.

A disjunctive graph representation is depicted in Figure 2.1. It consists of
all agent tours represented as paths, and directed edges with zero processing
time for every inter agent constraint. All edges which represent the sequencing
within the agents’ tours are called conjunctive, while the edges which represent
the inter agent constraints are called disjunctive. In Figure 2.1, the disjunctive
edge from vertex 3 to vertex 6 means that 3 must precede 6.

1 2 3

4 5 6 7

1

4

Figure 2.1: Disjunctive graph representation of a two agent solution. Disjunc-
tive edges are dotted.

Any feasible PCGmTSP solution must have an acyclic disjunctive graph
representation. Otherwise the order imposed by the agents’ tours is incom-
patible with the partial ordering enforced by the precedence constraints. Such
a cyclic solution is illustrated in Figure 2.2. This will be particularly impor-
tant to keep in mind when developing local search heuristics as known means
of manipulating and improving feasible TSP solutions, such as edge exchange
heuristics, may easily lead to cyclic solutions if one is not careful.

12 Chapter 2. Problem Descriptions

1 2 3

4 5 6 7

1

4

Figure 2.2: Disjunctive graph representation of an infeasible solution. Disjunc-
tive edges are dotted.

A known result [4] is that the cost of the longest path to any vertex i ∈ V
in the disjunctive graph representation of a solution s is equal to Tsta(s, g(i)),
with any eventual delays included. Furthermore, the algorithm for computing
the longest path includes a topological sorting step which detects if any cycles
occur within the graph. The processing times of the vertices may be used to
determine the time margin of each inter agent constraint, which is the amount
of time the groups involved in the constraint can be shifted before incurring a
delay. The time margins can then in turn be used to estimate the delays incurred
by manipulating a given solution without recomputing the longest path.

The longest path algorithm will be utilized to fully analyze a PCGmTSP
solution by checking for cycles, incurred delays, computing the time margins
of inter agent constraints, and determining the cycle time and time length of
the individual agents’ tours. However, because of its relatively expensive com-
putational time, it will be used conservatively and simpler estimations will be
employed within the heuristic algorithms.

3. Approximating and Solving
the Single Agent PCGTSP

This chapter describes a metaheuristic approach based on the Hybridized Ant
Colony System (HACS) algorithm [23], and a novel branch-and-bound algo-
rithm for the PCGTSP.

3.1 Hybridized Ant Colony System (HACS)

The HACS metaheuristic is a non-deterministic algorithm which is inspired by
the behavior of ants. The overarching idea is to model K generations of P
ants, each of which generate paths in a probabilistic manner in a given graph.
A generation consists of letting every ant generate one path each, and the ant
which has produced the “best” path so far deposits pheromones along the edges
of its path. This makes these edges more attractive to traverse for ants in the
following generations.

Let τij ∈ [0, 1] be the pheromone deposited along edge (i, j) ∈ E and let
ηij = 1/cij be a fixed visibility parameter which gives a fixed measurement of
how attractive an edge is. The pheromone deposits contribute to the exploita-
tion of good solutions. However, in order to avoid stagnation, a pheromone
dissipation parameter, ρ ∈ [0, 1], is introduced. When an edge (i, j) ∈ E is
traversed by an ant, the corresponding pheromone deposit is updated according
to the local rule:

13

14 Chapter 3. Approximating and Solving the Single Agent PCGTSP

τij = (1− ρ)τij + ρτ0 (3.1)

where τ0 is the initial pheromone level of all edges. Moreover, after each
generation the pheromone deposits are updated according to the global rule:

τij = (1− ρ)τij + ρ/C(s̄) (3.2)

for every (i, j) ∈ s̄, where s̄ is the best solution found so far and C(s̄) is its
total cost.

In each step of the path generation algorithm, an ant must choose which
edge to traverse given that the ant has generated a path leading up to vertex
i ∈ V . Assume that α, β ≥ 1 are parameters which regulate the relative impor-
tance of the pheromone deposit and the visibility parameter, respectively, when
choosing an edge. Let ψij denote the attractiveness of edge (i, j) ∈ E and let it
be computed as:

ψij = (τij)
α(ηij)

β . (3.3)

Furthermore, assume that V (s̃) is the set of vertices which are allowed to
be visited next given the partial solution s̃ that ends in vertex i. The ant then
chooses to traverse edge (i, j∗) ∈ E, j∗ ∈ V (s̃), such that

ψij∗ ≥ ψij ∀(i, j) ∈ E : j ∈ V (s̃), (3.4)

with probability d0. This is the deterministic rule which chooses the edge
which is the most attractive. The probabilistic rule is chosen with probability
(1− d0), and dictates that the ant chooses edge (i, j) ∈ E with probability

fij =





ψij∑
l∈V (s̃)

ψil
, if j ∈ V (s̃)

0, otherwise.

(3.5)

Moreover, for each path that is generated a 3-opt local search heuristic and
a vertex optimization procedure is applied. These algorithms are described in

3.1. Hybridized Ant Colony System (HACS) 15

Sections 3.1.1 and 3.1.2. The HACS framework and the path generation algo-
rithm are outlined below in Algorithm 3.1 and 3.2, respectively.

Algorithm 3.1 HACS framework

1. Set k := 1 and set s̄ = 0m with C(s̄) =∞.

2. Set p := 1

3. Generate a solution skp according to solution generation algorithm, and apply local
search heuristics. If C(skp) < C(s̄) then set s̄ = skp .

4. If p < P then set p := p+ 1 and go to step 3.

5. Set k := k+ 1. Take the best solution found so far, s̄, and update the pheromone
levels as τij = (1− ρ)τij + ρ/C(s̄) for every (i, j) ∈ s̄.

6. If k < K then go to step 2. Otherwise return overall best solution that was found
and stop.

Algorithm 3.2 Path generation for HACS
1. Initialize the solution s̃ by setting the first vertex to the predetermined start vertex

and set k := 2.

2. Compute the set of vertices allowed to be sequenced next in the solution, V (s̃),
by taking into account the precedence constraints and the groups already visited
in s̃.

3. Let d ∈ [0, 1] be a uniformly distributed random number. If d ≤ d0 then choose
the edge (i, j) according to the deterministic rule in Equation 3.4, i.e. the edge
which is feasible and has the highest probability is chosen. If d > d0 choose to
traverse the edge (i, j) according to probabilistic rule in Equation 3.5.

4. If edge (i, j) is traversed then update the pheromone deposits according to τij :=
(1− ρ)τij + ρτ0 and add (i, j) to s̃.

5. If k < m set k := k + 1 and go to step 2. Otherwise return s̃.

3.1.1 Vertex Selection

Choosing an optimal vertex selection given a sequence of groups can be formu-
lated as a simple shortest path problem in a layered network [21]. Assume a
given feasible tour represented as a straight path of groups, i.e.

16 Chapter 3. Approximating and Solving the Single Agent PCGTSP

σ = (Vp1 , . . . , Vpm , Vpm+1) (3.6)

with Vp1 = Vpm+1
= V1. Now take the shortest of the |V1| shortest paths

which run through the group sequence σ represented as a layered network where
each group’s vertices consists of one layer (see Figure 3.1).

Figure 3.1: A layered network representation of a feasible group sequence.
Shortest path through the network gives an optimal vertex selection.

There are known algorithms with polynomial worst case time complexity
which are able to solve the shortest path problem in a directed acyclic graph.
This makes vertex selection a relatively simple problem compared to group
sequencing. However, applying a full optimization of the vertex selection every
time a solution is modified is still quite cumbersome. Therefore, full vertex
selection optimization is only applied after a solution has been constructed and
after a local search heuristic is not able to improve the solution any further.

3.1.2 Path Preserving 3-opt

The heuristic which is applied after a feasible solution is generated in the HACS
algorithm (step 3 in Algorithm 3.1), is the path preserving 3-opt (PP3opt) de-
veloped for the SOP in [23].

Normally, a 3-opt heuristic takes a feasible tour, and attempts to remove 3

3.1. Hybridized Ant Colony System (HACS) 17

edges and add 3 edges, an operation known as a 3-exchange, such that feasibil-
ity is retained and the cost of the tour is reduced. For the symmetric TSP, one
can check both feasibility and eventual improvement in constant time for each
candidate 3-exchange. However, verifying precedence constraints and checking
for improvement with asymmetric costs increases this toO(n). The idea behind
the PP3opt heuristic is simple yet powerful. Since precedence constraints and
the asymmetric costs severely hamper the ability of traditional k-opt heuristics
to efficiently search most of the space of feasible exchanges, the PP3opt heuris-
tic limits the search to 3-exchanges which are efficiently verifiable, namely 3-
exchanges which preserve the orientation of the solution (see Figure 3.2). This
restriction of the search neighborhood together with the utilization of a special
labeling procedure for fast verification of the precedence constraints, enables
the PP3opt to retain the same worst case time complexity as a regular 3-opt
applied to the symmetric TSP.

Figure 3.2: The four different types of 3-exchange when edges (v1, v2),
(v3, v4), and (v5, v6) are removed. (A) is path preserving.

18 Chapter 3. Approximating and Solving the Single Agent PCGTSP

When applied to the PCGTSP, small modifications are done in order to im-
prove vertex selection. If one ignores vertex selection completely, the improve-
ment which is computed for each 3-exchange in the PP3opt is a misrepresen-
tation of what the actual improvement is. Conversely, checking every possible
vertex selection for each candidate 3-exchange is very computationally expen-
sive. In order to achieve a middle ground, a local vertex improvement pro-
cedure is introduced. Assume that the edges (v1, v2), (v3, v4), and (v5, v6)

are removed, and some combination of edges which reconnect these vertices is
added. Then for each group g(vi), i = 1, . . . , 6, a new vertex is chosen such
that the cost of the tour is reduced. This is done sequentially in the order in
which the groups are visited in the tour without reconsidering vertex selections
of previous groups. The local vertex improvement procedure is applied after
every 3-exchange. When no more improving and feasible 3-exchanges can be
found, a full optimization of the vertex selection is performed.

3.2 Branch-and-Bound Algorithm

The branch-and-bound algorithm proposed in this thesis utilizes a novel branch-
ing strategy where vertex selection is never fixed. Instead of branching on the
vertices, which would correspond to enumerating all feasible tours, the algo-
rithm branches on the order of groups. In other words, the search tree starts
with a root node where only the starting group is fixed, and every branch corre-
sponds to which group is to be visited next. The idea is that since the number
of feasible group sequences must be less than or equal to the number of feasible
tours, this strategy will limit branching.

Subproblems are formulated by utilizing shortest path calculations for their
corresponding group sequence. Assume that a node in the branch-and-bound
search tree attempting to solve the PCGTSP instance P corresponds to the fixed
group sequence σ = (V1, . . . , Vpr). The corresponding subproblem P(σ) is
then the PCGTSP instance P but constrained to find a tour which begins with
the group order defined by σ. A problem equivalent to P(σ) can be formulated
as following:

Definition 3.1. Given a PCGTSP instance P and a feasible group sequence
σ = (V1, . . . , Vpr), define P1(σ) as a PCGTSP instance with

3.2. Branch-and-Bound Algorithm 19

• the same groups, vertices and edges as in P , with the exception of
Vp2 , . . . , Vpr−1 and all their associated vertices and edges,

• the same precedence constraints as inP (taking into account the removed
groups),

• all outgoing edges from V1 and all incoming edges to Vpr removed except
for (i, j) ∈ E : i ∈ V1, j ∈ Vpr ,

• and all edge costs cij for the edges (i, j) ∈ E : i ∈ V1, j ∈ Vpr , replaced
by the cost of the shortest path from i ∈ V1 to j ∈ Vpr when traversing
the groups Vp2 , . . . , Vpr−1 in the order defined by σ.

However, by separating the partial group sequence defined by σ from the
rest of the instance one can formulate a powerful pruning technique which uti-
lizes information from already processed tree nodes. This will be explained
further in Section 3.2.2. The problem of finding a feasible tour (with respect to
P(σ)) which only takes into account the edge costs of the path from Vpr to V1
may be defined as:

Definition 3.2. Given a PCGTSP instance P and a feasible group sequence
σ = (V1, . . . , Vpr), define P2(σ) as a PCGTSP instance with

• the same groups, vertices and edges as in P , with the exception of
Vp2 , . . . , Vpr−1

and all their associated vertices and edges,

• the same precedence constraints as inP (taking into account the removed
groups),

• all outgoing edges from V1 and all incoming edges to Vpr removed except
for (i, j) ∈ E : i ∈ V1, j ∈ Vpr ,

• and all edge costs cij for the edges (i, j) ∈ E : i ∈ V1, j ∈ Vpr set to
zero.

Assume that z∗(P) is the optimal tour cost of a problem instance P and that
cmin(σ) is the cost of the shortest path from V1 to Vpr when traversing the groups
Vp2 , . . . , Vpr−1

in the order defined by σ. Then the following result holds:

Proposition 3.1. z∗(P(σ)) ≥ z∗(P2(σ)) + cmin(σ)

20 Chapter 3. Approximating and Solving the Single Agent PCGTSP

Proof. The left hand side is the cost of a tour which begins with the sequence
of groups σ = (V1, . . . , Vpr) and then traverses the rest of the groups of the
problem instance P . The left hand side is the cost of the optimal solution to the
same problem as P(σ) but with the vertex selection at V1 and Vpr relaxed. That
is to say, one allows the tour to enter and exit at different vertices in V1 and Vpr .
This can only reduce the cost of the tour.

Proposition 3.1 means that one can compute a valid lower bound for the
problem P(σ) by first computing a lower bound for P2(σ) and then adding the
cost of the shortest path which traverses σ.

The branch-and-bound tree is traversed by using a depth-first search in order
to conserve memory and to rapidly obtain complete solutions. Branching is
prioritized according to the rule

arg max
p∈M

|{q ∈M : (p, q) ∈ Π}|. (3.7)

The motivation for using this priority is two-fold. Firstly, groups which are
required to precede many of the other groups should have a higher probability of
occurring early in the optimal tour. Secondly, since the precedence constraints
are almost completely relaxed in the bounding methods which are considered
in this thesis, eliminating them may strengthen the lower bounds.

3.2.1 Bounding Methods

The bounding methods considered in this thesis are based on the minimum
spanning arborescence problem (MSAP) and the assignment problem (AP). The
MSAP is obtained by taking an ATSP and relaxing the vertex out-degree con-
straints which dictate that each vertex should have exactly one outgoing edge
connected to it. The resulting problem then becomes to find the minimum cost
directed spanning tree (arborescence) such that each vertex has exactly one in-
coming edge. The AP can be formulated by taking an ATSP and relaxing the
subtour elimination constraints which ensure that only one cycle occurs in the
solution (the tour itself). The result is the vertex disjoint cycle cover problem
which can be equivalently formulated as an AP. However, due to the prece-
dence constraints and the partitioned graph, the same relaxations applied to the
PCGTSP result in intractable NP-hard problems [28, 38].

3.2. Branch-and-Bound Algorithm 21

Since it is difficult to even define what a predecessor is in an arbores-
cence or a cycle cover, the precedence constraints are almost completely re-
laxed. The weak version of a PCGTSP instance P is the GTSP without prece-
dence constraints which is defined on the same graph as P but with all edges
(i, j) ∈ E : (g(j), g(i)) ∈ Π removed. The weak version of P is a relaxation
of P and therefore its optimal tour cost must be lower than that of P .

In order to obtain an unpartitioned graph, two different approaches are con-
sidered. The first one involves applying the Noon-Bean transformation [40] to
the weak version of a PCGTSP instance. The transformation takes an asym-
metric GTSP instance and defines an equivalent ATSP with n vertices. This is
achieved by defining a directed cycle within each group where the edges that
the cycle consists of have zero cost. Furthermore, if a group Vp with |Vp| = r

is given a cycle with the order (v1, . . . , vr) then the costs of all outgoing edges
from Vp are redefined as:





c(NB)
vij

= cvi+1j ∀j /∈ Vp, i = 1, . . . , r − 1,

c(NB)
vrj

= cv1j ∀j /∈ Vp.
(3.8)

In order to ensure that the edges within the cycle are the only zero cost
edges in the graph, edges not belonging to the cycle have their corresponding
cost offset by a value c(NB)

off . In other words, for every edge (i, j) ∈ E such that
(i, j) 6= (vi, vi+1), i = 1, . . . , r − 1, and (i, j) 6= (vr, v1), the corresponding
edge costs are defined as:

c(NB)
ij = cij + c(NB)

off . (3.9)

By using these edge costs and removing the groups (but retaining the set of
all vertices) one may define the following ATSP instance:

Definition 3.3. For any PCGTSP instance P , let NB(P) denote the ATSP in-
stance which arises when applying the Noon-Bean transformation [40] to the
weak version of P .

The second approach involves relaxing the vertex choice constraints which
enforce the rule that one must enter and exit the same vertex when visiting a
group. It has been shown in [39] that by doing this one may define each group

22 Chapter 3. Approximating and Solving the Single Agent PCGTSP

as a single vertex and all edge costs as:

c(NC)
pq = min

(i,j)∈Vp×Vq

cij ∀(p, q) ∈M ×M : (q, p) /∈ Π. (3.10)

In other words, the following ATSP instance with m vertices is formulated:

Definition 3.4. For any weak version of a PCGTSP instance P , let NC(P)

be the ATSP instance defined on the graph GNC = (M,ENC) where ENC =

{(p, q) ∈ M ×M : (q, p) /∈ Π}. For every (p, q) ∈ ENC the edge costs are
defined as in Equation 3.10.

V1 V2

V3

V4

(a) P

V1 V2

V3

V4

(b) NB(P)

V1 V2

V3

V4

(c) NC(P)

Figure 3.3: Feasible tours in a GTSP instanceP and the transformations NB(P)
and NC(P).

3.2. Branch-and-Bound Algorithm 23

A couple of things should be noted about these transformed problems. If
applied to the same PCGTSP instance P , the problem NC(P) is always smaller
than or equal to the size of NB(P) in terms of the size of the graphs which these
problems are defined on (since m ≤ n). However, if z∗(·) is the optimal tour
cost of a problem instance, then the following relations between the problem
instances hold (given that z∗(NB(P)) has been appropriately adjusted for the
edge cost offsets c(NB)

off):

z∗(P) = z∗(NB(P)) ≥ z∗(NC(P)). (3.11)

So while NC(P) is defined on a smaller graph than NB(P), it is a potentially
weaker formulation. Furthermore, NB(P) is a problem which is particularly ill-
suited for the AP bound since any group Vp with |Vp| > 1 defines a zero cost
cycle in the graph. Consider a PCGTSP instance P with |Vp| > 1, ∀p ∈ M .
Then the optimal cycle cover in the graph of NB(P) has zero cost which is a
trivial bound.

3.2.1.1 An Alternative Assignment Problem Bound

One can utilize a more general version of the problem NC(P) when computing
the AP bound by replacing the edge costs with so called L-paths:

Definition 3.5. For a PCGTSP instance P and for a fixed integer L ≥ 1, an
L-path is a feasible path (a path which could be a part of a feasible tour in
P) consisting of exactly L edges visiting L + 1 groups. Let dL(p, q) denote
the length of a shortest L-path whose start vertex is in p and whose end vertex
is in q. Let the problem NCL(P) be the same as NC(P) but with edge costs
c(NC)
pq = dL(p, q).

Note that d1(p, q) is simply the minimum cost of all edges from p to q and
the resulting problem NC1(P) is equal to NC(P). For every fixed L > 1

computing the L-path distances dL(p, q) can be done in polynomial time by
using a dynamic programming method. One can use the following result in
order to compute a bound for NCL(P):

Proposition 3.2. The minimum cost of a cycle cover in NCL(P) divided by L,
is a lower bound on the optimal tour cost of P .

Proof. See Paper II.

24 Chapter 3. Approximating and Solving the Single Agent PCGTSP

3.2.2 History Utilization

By using the subproblem definition P2(σ) described in Definition 3.2, the his-
tory utilization pruning technique presented in [44] for the SOP can be general-
ized for the PCGTSP. In order to adequately describe the technique the follow-
ing equivalence relation among branch-and-bound tree nodes is useful:

Definition 3.6. For every pair (S, r), S ⊆ M , |S| > 1, and r ∈ S such that
(r, q) /∈ Π when q ∈ S, define T (S, r) to be the set of all tree nodes whose
group sequences begin at V1, traverse the groups in S (and no other groups),
and end at group Vr. Any tree nodes belonging to the same set T (S, r) are said
to be equivalent.

In the remainder of this section, consider an unprocessed tree nodeN (σ) ∈
T (S, r) with partial group sequence σ = (V1, . . . , Vr). Let P (σ)

ij be the shortest

path which leads from i ∈ V1 to j ∈ Vr through σ, and let c(P (σ)
ij) denote its

cost. Also assume that P (S,r)
ij is the shortest path from node i ∈ V1 to node

j ∈ Vr which has been discovered during the branch-and-bound search, with
c(P

(S,r)
ij) denoting its cost. If no tree node in T (S, r) has been processed then

c(P
(S,r)
ij) =∞. The following result enables the pruning technique:

Proposition 3.3. If c(P (S,r)
ij) < c(P

(σ)
ij),∀(i, j) ∈ E; i ∈ V1, j ∈ Vr, then

there can’t exist a solution to the PCGTSP which includes σ and has smaller
total cost than a solution which includes P (S,r)

ij , (i, j) ∈ E : i ∈ V1, j ∈ Vr. In
other words, the tree node N (σ) can be pruned.

Proof. See Paper II.

If c(P (σ)
ij) < c(P

(S,r)
ij) for some (i, j) ∈ E : i ∈ V1, j ∈ Vr then the tree

nodeN (σ) ∈ T (S, r) cannot be pruned according to Proposition 3.3. However,
if another tree node N (σ̃) ∈ T (S, r) has been processed before N (σ), and the
lower bound zLB(P2(σ̃)) on the corresponding problem P2(σ̃) has been stored,
then one can obtain a lower bound for P(σ) directly by computing:

zLB(P(σ)) = zLB(P2(σ̃)) + min
(i,j)∈V1×Vr

c(P
(σ)
ij). (3.12)

This follows from Proposition 3.1 and the fact that P2(σ) = P2(σ̃).

4. Approximating the
Multiple Agent PCGTSP

4.1 Hybridized Ant Colony System (HACS)
The HACS for the PCGmTSP largely follows the same procedure as for the
PCGTSP outlined in Section 3.1. Since every vertex edge (i, j) ∈ E is uniquely
associated with an agent, there is no need to specify the agent when an ant
chooses to traverse an edge. Therefore, the same procedures and quantities as
for the single agent case can be used.

However, it should be noted how V (s̃), the set of vertices which are feasible
to visit next given a partial solution s̃, is defined. Assume that each of the A
partial tours in s̃ end at the vertices i1, . . . , iA. Then a vertex j is in V (s̃) if the
following conditions hold:

• Vg(j) has not been visited in s̃.

• Λ(j) = Λ(ia) and (ia, j) ∈ E for some a = 1, . . . , A.

• All groups Vp such that (p, g(j)) ∈ Π have been visited in s̃.

The last condition might seem unnecessarily severe. After all, one may
formulate a rule where an agent is allowed to visit a group Vq as long as there is
at least one other agent which is able to visit all unvisited groups Vp : (p, q) ∈
Π. This rule might generate solutions with many delays but enables the HACS
algorithm to search a more diverse set of solutions. However, it turns out that

25

26 Chapter 4. Approximating the Multiple Agent PCGTSP

such a rule often leads to cyclic solutions, and becomes harder and harder to
verify as the path generation algorithm progresses.

4.2 Local Search Procedure

For the single agent PCGTSP only one local search heuristic, PP3opt, is applied
to a single tour, and therefore the local search procedure could be formulated
as a simple descent search. For the multiple agent case, there are several chal-
lenges which motivate a revised local search procedure, such as several local
search heuristics with possible interactions, and the expensive cycle time com-
putation.

The different heuristics which are applied are: a slightly revised version of
PP3opt, String Move which tries to move a part of an agent’s tour to another
agent, and Delay Removal which attempts to eliminate delays from a solution
by moving groups that are involved in a delay forwards or backwards in their
respective tour. Details around their implementations will be described in the
coming sections.

The first thing which is modified in the local search procedure is the im-
provement criterion for the different heuristics. Normally, an improvement is
defined with respect to a problem’s objective, but using a reduction in cycle
time as a measure of improvement may lead to undesired deadlocks. Assume
that sold is a solution given to a local search heuristic and that snew is the same
solution after being manipulated. Let T (s) = (T1(s), . . . TA(s)) be a vector of
the A individual agents’ tour lengths of a solution s, sorted in ascending order
(T1(s) is the shortest and TA(s) the longest). One may then define the following
improvement measure:

I(sold, snew) = LA(T (sold),T (snew)) (4.1)

where for all a = 1, . . . , A, and x = (x1, . . . , xA), y = (y1, . . . , yA), the
recursive function La : RA× RA → R is defined as

La(x,y) =

{
La−1(x,y), if xa = ya and a > 1

xa − ya, otherwise.
(4.2)

The improvement measure I(·, ·) will naturally never consider an increase

4.2. Local Search Procedure 27

in cycle time as an improvement but will accept some cases of constant cycle
time while reducing the length of an agent’s tour as an improvement.

Because of possible interactions between the different local search heuris-
tics, a general framework around them is implemented. Given a solution s,
let N3opt(s), NSM(s), and NDR(s) be the neighborhoods of the PP3opt, String
Move, and Delay Removal heuristics respectively. Given a feasible initial solu-
tion s0 and a maximum number of iterations kmax, the framework for the local
search procedure can then be outlined as follows:

Algorithm 4.1 Local Search Framework
1. Set k := 1 and p := 0.

2. Try to find a solution s3opt ∈ N3opt(sk) such that I(sk, s3opt) > 0. If
I(sk, s3opt) > p, set p := I(sk, s3opt) and sk+1 := s3opt.

3. If p = 0, try to find a solution sSM ∈ NSM(sk) such that I(sk, sSM) > 0. If
I(sk, sSM) > p, set p := I(sk, sSM) and sk+1 := sSM.

4. Try to find a solution sDR ∈ NDR(sk) such that I(sk, sDR) > 0. If I(sk, sDR) >
p, set p := I(sk, sDR) and sk+1 := sDR.

5. If k = kmax or p = 0 then terminate and return sk. Otherwise set k := k + 1,
p := 0, and go to step 2.

Note that the String Move heuristic is only invoked if the PP3opt is not
able to find an improving solution, while the Delay Removal heuristic is always
executed.

Since computing the actual improvement for every solution in the local
search neighborhoods is very expensive, heuristic specific estimations of the
individual agents’ tours will be used instead. The estimations are then used in
order to cull the number of solutions which are to be fully analyzed. Given a
solution s̃ and a max number of solutions to be evaluated jmax, then a general
procedure for finding an improving solution within a neighborhood N(s̃) is:

28 Chapter 4. Approximating the Multiple Agent PCGTSP

Algorithm 4.2 Neighborhood Search

1. For each s ∈ N(s̃), let Î(s̃, s) be an estimation of I(s̃, s) and add s to a list
which is sorted according to the estimations in descending order. So, if the list
has |N(s̃)| elements then Î(s̃, sk) ≥ Î(s̃, sk+1) holds for k = 1, . . . , |N(s̃)|.

2. Set k := 1.

3. Compute the actual improvement I(s̃, sk) by computing the longest path in the
disjunctive graph representation of sk. If I(s̃, sk) > 0 then terminate and return
sk.

4. If k = jmax, then terminate and return s̃. Otherwise, set k := k+ 1 and go to step
3.

It is important to note that the list of solutions sorted according to the esti-
mated improvements only give a slight indication of which solutions are good.
It is entirely possible that all of the solutions in the list are non-improving or
even infeasible.

4.2.1 Vertex Selection

In order to optimize vertex selection one can apply the same procedure as de-
scribed in Section 3.1.1 to each individual tour in a PCGmTSP solution. The
vertex selection algorithm is always applied before a solution is fully analyzed
by computing the longest path in the disjunctive graph. Other, more local, ver-
tex selection improvements are applied within the local search heuristics.

4.2.2 Path Preserving 3-opt

The PP3opt is only modified such that it searches all A tours for feasible path
preserving 3-exchanges. The estimation of improvement for the neighborhood
search are, as usual, based on the sums of costs of the edges exchanged but the
delays directly caused by the 3-exchange are also taken into account. A path
preserving 3-exchange may be visualized as two paths within the tour trading
places (see Figure 4.1).

4.2. Local Search Procedure 29

Figure 4.1: A path preserving 3-exchange for a tour visualized as a path. Top
path represents the tour before the exchange, and the bottom one after the ex-
change.

Assume that a 3-exchange for the tour of agent a in solution s is being
evaluated. If a vertex vi in “path_left” is involved in an inter agent constraint,
(g(vi), q) ∈ Π and Λ(s, q) 6= a, then a delay may be incurred in the tour of
agent Λ(s, q). Similarly, if a vertex vi in “path_right” is involved in an inter
agent constraint, (p, g(vi)) ∈ Π and Λ(s, p) 6= a, then a delay may be incurred
in the tour of agent a. These types of delays are the only ones that are considered
when estimating the improvement while delays caused indirectly due to chain
effects are ignored.

4.2.3 String Move

The String Move heuristic is based on a known VRP heuristic [11] adapted to
handle the precedence constraints and the vertex selection. It attempts to move
a sequence of groups σ = (Vp1 , . . . , Vpr) from the tour of one agent af to the
tour of another agent at. This is a path preserving operation, and therefore the
same labeling procedure for fast verification of the precedence constraints used
in the PP3opt heuristic can be used here.

30 Chapter 4. Approximating the Multiple Agent PCGTSP

Figure 4.2: A string move. Edges with an "X" over them are removed while
dashed edges are added.

Since vertices are unique to each agent, the choice of vertices within σ needs
to be determined when moving it to another agent’s tour. This is done in a
greedy fashion. Assume that σ is removed from between the vertices vprv and
vnxt in the tour of agent af and added to the tour of agent at between the vertices
vout and vinc. Also assume that that σt = (v1, . . . , vr) is the sequence of vertices
to be chosen to visit when σ is moved to at. So the edges (vprv, v1), (vr, vnxt) and
(vout, vinc) are removed, while the edges (vout, v1), (vr, vinc), and (vprv, vnxt) are
added. The String Move heuristic chooses the vertex v1 ∈ Vp1 with Λ(v1) = at

which minimizes:

λ1 = c̃voutv1 + c̃v1vinc . (4.3)

More generally, for i = 2, . . . , r, the vertex vi ∈ Vpi : Λ(vi) = at is chosen
such that

λi = λi−1 + c̃vi−1vi + c̃vivinc − c̃vi−1vinc (4.4)

is minimized.
The lengths of the agents’ tours are estimated by removing the cost of

4.2. Local Search Procedure 31

traversing σ in the tour of agent af and adding the cost of traversing σt in the
tour of at. Furthermore, delays incurred by moving σ are also estimated and
taken into account. These estimations are only based on the time shifts directly
caused by moving σ.

4.2.4 Delay Removal

The Delay Removal heuristic is based on a known method for job shop schedul-
ing problems [10]. It takes a solution s, identifies delays caused by inter agent
constraints (p, q) ∈ Π, and tries to reduce them. This is done by attempting to
move Vp backwards to an earlier place in the tour of agent Λ(s, p) while moving
Vq forwards to a later place in the tour of Λ(s, q) such that the delay is reduced,
and the solution remains feasible and is improved.

The estimation of the tour lengths takes into account the reduction in the
delay, the cost of the edges which are exchanged in order to move Vp backwards
and Vq forwards, and eventual new delays caused directly by the edge exchange.

32 Chapter 4. Approximating the Multiple Agent PCGTSP

5. Results

In this chapter some updated results for the HACS approach to the PCGTSP
is presented. Many optimizations of the code and improved compiler settings
since the results presented in Paper I has increased the speed considerably.

The problem instances “cmm00x” are derived from industrial instances of
coordinate measuring machine problems. Problem instances named “020.XXX”
are derived from SOP instances in the same way as outlined in Paper II. In Table
5.1 the results measured over 10 trial runs are presented. The column “Mean
± SD” shows the mean solution value and the standard deviation, and “T (s)”
is the mean execution time. The optimality gap is the mean solution value (M)
compared to the best known lower bound (LB) and is calculated as (M−LB)/M.
The following parameter values are used in the HACS algorithm:

• α = 1, β = 2 (attractiveness weighted towards edge length)

• ρ = 0.1 (evaporation parameter)

• d0 = 0.9 (deterministic rule probability)

• τ0 = 0.5 (initial pheromone deposits)

33

34 Chapter 5. Results

Table 5.1: Updated results for the HACS heuristic.

Instance m n
HACS Best known

Mean ± SD Gap T (s) UB LB
cmm001 12 14 49.1 ± 0.0 0.000 0.0 49.1 49.1
cmm002 15 24 20.7 ± 0.0 0.019 0.0 20.3 20.3
cmm003 17 35 20.3 ± 0.1 0.015 0.1 20.0 20.0
cmm004 90 215 47.5 ± 0.7 0.516 2.5 46.1 23.0
cmm005 173 404 182.1 ± 2.7 0.594 11.2 178.2 74.0
020.br17.10 17 88 44.8 ± 0.8 0.011 0.2 44.3 44.3
020.br17.12 17 92 44.2 ± 0.1 0.002 0.2 44.1 44.1
020.ESC12 13 64 1389.8 ± 0.0 0.000 0.1 1389.8 1389.8
020.ESC25 26 134 1388.2 ± 11.7 0.004 0.4 1383.1 1383.1
020.ESC47 48 245 1204.4 ± 46.7 0.144 1.5 1062.6 1030.4
020.ESC63 64 350 50.5 ± 0.1 0.018 3.5 50.4 49.6
020.ESC78 79 414 14936.1 ± 47.3 0.227 4.0 14425.0 11540.0
020.ft53.1 53 282 6265.5 ± 49.4 0.038 1.9 6197.4 6024.8
020.ft53.2 53 275 6940.6 ± 26.3 0.075 1.8 6717.8 6420.8
020.ft53.3 53 282 8863.2 ± 109.9 0.074 1.6 8718.3 8209.6
020.ft53.4 53 276 11973.5 ± 71.5 0.013 1.6 11823.2 11823.2
020.ft70.1 70 346 32996.3 ± 113.3 0.047 3.4 32794.7 31450.4
020.ft70.2 70 351 34381.7 ± 314.2 0.067 3.2 33613.7 32080.8
020.ft70.3 70 347 36129.4 ± 415.3 0.058 2.9 35532.5 34028.0
020.ft70.4 70 353 45038.1 ± 167.2 0.049 2.7 44847.0 42824.0
020.kro124p.1 101 515 34047.8 ± 375.0 0.089 8.5 33509.7 31010.0
020.kro124p.2 101 525 35775.1 ± 571.9 0.109 8.0 34775.7 31873.0
020.kro124p.3 101 535 43362.4 ± 508.9 0.190 7.4 42510.8 35123.0
020.kro124p.4 101 527 65755.2 ± 758.5 0.112 6.6 64491.5 58417.0
020.p43.1 43 204 22613.8 ± 17.6 0.005 1.1 22574.9 22512.0
020.p43.2 43 199 22875.8 ± 7.1 0.004 1.0 22854.1 22784.0
020.p43.3 43 212 23190.9 ± 12.0 0.005 1.0 23174.7 23068.0
020.p43.4 43 205 66956.5 ± 42.6 0.002 0.9 66848.4 66848.4
020.prob42 41 208 209.9 ± 4.4 0.074 1.0 202.0 194.4
020.prob100 99 510 1359.7 ± 39.1 0.312 7.2 1291.0 936.0
020.rbg048a 49 255 287.2 ± 0.6 0.022 1.4 286.4 280.8
020.rbg050c 51 259 384.0 ± 1.5 0.027 1.5 380.7 373.6
020.rbg109a 110 573 862.3 ± 4.8 0.037 7.8 856.9 830.4
020.rbg150a 151 871 1448.4 ± 5.8 0.033 19.5 1440.1 1400.0
020.rbg174a 175 962 1681.5 ± 4.0 0.033 27.2 1678.1 1626.4
020.rbg253a 254 1389 2440.6 ± 8.0 0.033 86.4 2430.2 2360.0
020.rbg323a 324 1825 2617.2 ± 10.1 0.040 235.6 2601.4 2512.0
020.rbg341a 342 1821 2248.3 ± 12.6 0.086 246.5 2237.3 2054.4
020.rbg358a 359 1967 2200.9 ± 15.3 0.075 301.9 2178.6 2036.0

35

Table 5.1: Updated results for the HACS heuristic (continued).

Instance m n
HACS Best known

Mean ± SD Gap T (s) UB LB
020.rbg378a 379 1974 2421.5 ± 14.4 0.072 322.3 2392.7 2247.2
020.ry48p.1 48 256 13308.5 ± 72.9 0.050 1.5 13151.5 12644.0
020.ry48p.2 48 250 14003.5 ± 123.1 0.082 1.4 13804.6 12859.2
020.ry48p.3 48 254 16901.2 ± 184.8 0.077 1.3 16612.1 15592.0
020.ry48p.4 48 249 26275.0 ± 146.6 0.011 1.2 25980.0 25980.0
Averages 13754.0 ± 197.7 0.081 30.5

The results show a significant improvement in execution time compared to
the results in Paper I. For example, cmm005 took over 600 seconds on average
in Paper I and is now 50 times faster. This makes the HACS algorithm better
than the currently used PCGTSP heuristic in IPS with respect to both solution
quality (by over 12% on average for cmm005) and execution time.

On average the mean solution value is at least within 10% of the optimal
solution, and the average relative standard deviation is within 2%. For the
instances cmm004 and cmm005 there is probably a lot of slack in the best
known lower bound estimation and therefore the gap is quite large. For some
of the SOP derived problem instances, such as 020.ESC78, 020.kro124p.3, and
020.prob100, the algorithm is shown to perform significantly worse than aver-
age. Further investigation of why these problem instances are harder to solve is
needed.

36 Chapter 5. Results

6. Conclusions and Future
Work

The heuristic algorithm presented in this thesis is, on average, able to produce
good solutions for single robot stations within a reasonable time frame. The
exact algorithm is able to solve some of the instances which are smaller and
more dense with precedence constraints. The evaluation of the bounding meth-
ods shows that the assignment problem bound is more efficient than the bound
obtained by solving a minimum spanning arborescence problem. The bound
obtained from the assignment problem based on L-paths is shown to be of vary-
ing quality depending on the data but does not seem to consistently give better
bounds with increasing values on L.

Because of a lack of exact methods and valid lower bounds for the test
instances in the multiple agent case, assessment of the quality of solutions pro-
duced by the HACS algorithm is not possible. Comparison with the current
solver in the IPS software shows an improvement around 2% on average. It can
however be concluded that the calculations of the makespan and delays become
more cumbersome as the number of precedence constraints increases. In par-
ticular, the local search procedure which evaluates many candidate solutions in
the local search neighborhoods becomes significantly slower.

While the HACS algorithm for the single agent PCGTSP is proven to pro-
duce acceptable results on average, vertex selection improvement which is now
only considered fairly scarcely in the algorithm process could be incorporated
more. For example, some estimation of vertex selection when evaluating a fea-

37

38 Chapter 6. Conclusions and Future Work

sible 3-exchange could be considered.
The branch-and-bound algorithm for the PCGTSP may be improved in many

ways. The bounding methods that are used involve defining simpler problems
where the precedence constraints are almost completely relaxed. This weakens
the lower bounds considerably since the precedence constraints are often piv-
otal in defining the feasible region of the PCGTSP. To remedy this, one needs
to take the precedence constraints into account in the bounding process. One
of the aims of the L-paths were to reintroduce them and the vertex selection
constraints into the bounding method but instances with vertices which are par-
ticularly cheap to visit made the L-distances very short, and therefore the lower
bounds became quite weak. The L-distances could be strengthened by utilizing
a modified branching strategy where cheap vertices are identified and branched
on. Finally, dualization of constraints coupled with a subgradient method could
further strengthen the lower bounds. Even though initial tests with dualization
of the vertex degree constraints coupled with a simple subgradient method did
not give very good results, more sophisticated methods may prove to be suc-
cessful. Strengthening the bound at the root could be particularly beneficial
since this gives a better estimation of the quality of the best feasible solution
found by the algorithm.

In order to better assess the solutions produced by the HACS algorithm for
the PCGmTSP, there is a need to develop exact methods for obtaining optimal
solutions or lower bounds. While the algorithm seems to consistently produce
better solutions when the local search procedure is allowed to more thoroughly
explore its neighborhood, the time it requires to do so increases considerably for
problem instances where many inter agent constraints arise. To adapt, one could
opt for a more restricted local search procedure in cases with many inter agent
constraints, or even forgo the local search procedure completely and instead
only rely on the explorative nature of the ant path generation itself.

7. Summary of Publications

Paper I - An industrially validated CMM inspection process
with sequence constraints
Authors: R. Salman, J.S. Carlson, F. Ekstedt, D. Spensieri, J. Torstensson, R.
Söderberg.

This conference paper presents a heuristic approach for approximating the sin-
gle agent PCGTSP based on the Hybridized Ant Colony System algorithm [23].
It also gives more detailed insight on how the PCGTSP arises in industrial
applications, in particular in the process of computer generated coordinate-
measuring machine programs.

Paper II - Branch-and-bound for the Precedence Constrained
Generalized Traveling Salesman Problem
Authors: R. Salman, F. Ekstedt, P. Damaschke.

This paper showcases the results of an exact branch-and-bound based approach
to the single agent PCGTSP. Different bounding methods are evaluated and a
novel branching technique which utilizes dynamic programming is presented.
A pruning technique previously developed for the SOP is also generalized and
applied to the PCGTSP. This manuscript has been submitted to Discrete Opti-
mization.

39

40 Chapter 7. Summary of Publications

Paper III - A Hybridized Ant Colony System Approach to
the Precedence Constrained Generalized Multiple Traveling
Salesman Problem
Authors: F. Ekstedt, R. Salman, D. Spensieri.

This paper extends the work presented in Paper I to the multiple agent case.
A more general local search procedure is incorporated into the Hybridized Ant
Colony System algorithm and more local search neighborhoods are explored.
This manuscript has yet to be submitted for publication at the time of printing
this thesis.

Bibliography

[1] A.I. Ali and J.L. Kennington, The asymmetric M-travelling salesmen
problem: A duality based branch-and-bound algorithm, Discrete Ap-
plied Mathematics 13(2–3) (1986), pp. 259-276.

[2] D. Anghinolfi, R. Montemanni, M. Paolucci, L.M. Gambardella, A hy-
brid particle swarm optimization approach for the sequential ordering
problem, Computers & Operations Research 38 (2011), pp. 1076–1085.

[3] N. Ascheuer, M. Jünger, G. Reinelt, A Branch & Cut Algorithm for the
Asymmetric Traveling Salesman Problem with Precedence Constraints,
Computational Optimization and Applications 17 (2000), pp. 61-84.

[4] E. Balas, Machine Sequencing via Disjunctive Graphs: An Implicit Enu-
meration Algorithm, Operations Research 17(6) (1969), pp. 941-957.

[5] E. Balas, New classes of efficiently solvable generalized Traveling Sales-
man Problem, Annals of Operations Research 86 (1999), pp 529-558.

[6] E. Balas and N. Christofides, A Restricted Lagrangean Approach to the
Traveling Salesman Problem, Mathematical Programming 21 (1981), pp.
19-46.

[7] E. Balas, M. Fischetti, W.R. Pulleyblank, The precedence-constrained
asymmetric traveling salesman problem, Mathematical Programming 68
(1995), pp. 241-265.

41

42 Bibliography

[8] E. Benavent and A. Martínez, Multi-depot Multiple TSP: a polyhedral
study and computational results, Annals of Operations Reasearch 207(1)
(2013), pp. 7-25.

[9] L. Bianco, A. Mingozzi, S. Ricciardelli, M. Spadoni, Exact and Heuristic
Procedures for the Traveling Salesman Problem with Precedence Con-
straints, Based on Dynamic Programming, INFOR 32(1) (1994), pp. 19-
32.

[10] J. Blazewicz, W. Domschkeb, E. Pesch, The job shop scheduling prob-
lem: Conventional and new solution techniques, European Journal of
Operational Research 93(1) (1996), pp. 1-33.

[11] A. van Breedam, Improvement Heuristics for the Vehicle Routing Prob-
lem based on Simulated Annealing, European Journal of Operational Re-
search 86 (1995), pp. 480-490.

[12] K. Castelino, R. D’Souza, P.K. Wright, Toolpath optimization for min-
imizing airtime during machining, Journal of Manufacturing Systems
22(3) (2003), pp. 173-180.

[13] A. Chentsov, M, Khachay, D. Khachay, Linear time algorithm for Prece-
dence Constrained Asymmetric Generalized Traveling Salesman Prob-
lem, IFAC-PapersOnLine 49(12) (2016), pp. 651-655.

[14] N. Christofides, A. Mingozzi, P. Toth, State-Space Relaxation Proce-
dures for the Computation of Bounds to Routing Problems, Networks
11(2) (1981), pp. 145-164.

[15] A.A. Ciré and WJ. van Hoeve, Multivalued Decision Diagrams for Se-
quencing Problems, Operations Research 61(6) (2013), pp. 1411-1428.
Pages 1411-1428.

[16] R. Dewil, P. Vansteenwegen, D. Cattrysse, Construction heuristics for
generating tool paths for laser cutters, International Journal of Produc-
tion Research 52(20) (2014), pp. 5965-5984.

[17] R. Dewil, P. Vansteenwegen, D. Cattrysse, M. Laguna, T. Vossen, An im-
provement heuristic framework for the laser cutting tool path problem,

Bibliography 43

International Journal of Production Research 53(6) (2015), pp. 1761-
1776.

[18] L.F. Escudero, M. Guignard, K. Malik, A Lagrangian relax-and-cut ap-
proach for the sequential ordering problem with precedence relation-
ships, Annals of Operations Research 50 (1994), pp. 219-237.

[19] M. Fischetti, Facets of the Asymmetric Traveling Salesman Polytope,
Mathematics of Operations Research 16(1) (1991), pp. 42-56.

[20] M. Fischetti, J.J. Salazar Gonsalez, P. Toth, The symmetric generalized
traveling salesman polytope, Networks 26(2) (1995), pp. 113–123.

[21] M. Fischetti, J.J. Salazar Gonsalez, P. Toth, A Branch-And-Cut Algorithm
for the Symmetric Generalized Traveling Salesman Problem, Operations
Research 45(3) (1997), pp. 378–394.

[22] M. Fischetti and P. Toth, A Polyhedral Approach to the Asymmetric Trav-
eling Salesman Problem, Management Science 43(11) (1997), pp. 1520-
1536.

[23] L.M Gambardella and M. Dorigo, An Ant Colony System Hybridized with
a New Local Search for the Sequential Ordering Problem, INFORMS
Journal on Computing 12(3) (2000), pp 237-255.

[24] B. Gavish and K. Srikanth, An Optimal Solution Method for Large-Scale
Multiple Traveling Salesmen Problems, Operations Reasearch 34(5)
(1986), pp. 698-717.

[25] A.H. Gharehgozli, G. Laporte, Y. Yu, R. de Koster, Scheduling Twin Yard
Cranes in a Container Block, Transportation Science 49(3) (2017), pp.
685-705.

[26] J.A.S. Gromicho, J. Paixão, I. Bronco, Exact Solution of Multiple Travel-
ing Salesman Problems, Combinatorial Optimization Vol. 82 (1992), pp.
291-292.

[27] G. Gutin, D. Karapetyan, N. Krasnogor, A memetic algorithm for the
generalized traveling salesman problem, Natural Computing 9 (2010),
pp. 47–60.

44 Bibliography

[28] G. Gutin and A. Yeo, Assignment problem based algorithms are im-
practical for the generalized TSP, Australasian Journal of Combinatorics
27(1) (2003), pp. 149-153.

[29] M. Held and R. M. Karp, A Dynamic Programming Approach to Se-
quencing Problems, Journal of the Society for Industrial and Applied
Mathematics 10:1 (1962), pp 196-210.

[30] M. Held and R. M. Karp, The Traveling Salesman Problem and Minimum
Spanning Trees, Operations Research 18(6) (1970), pp. 1138-1162.

[31] M. Held and R. M. Karp, The Traveling Salesman Problem and Minimum
Spanning Trees: Part II, Mathematical Programming 1 (1971), pp. 6-26.

[32] K. Helsgaun, An effective implementation of the Lin–Kernighan traveling
salesman heuristic, European Journal of Operational Research 126(1)
(2000), pp. 106-130.

[33] K. Helsgaun, General k-opt submoves for the Lin–Kernighan TSP
heuristic, Mathematical Programming Computation 1(2–3) (2009), pp.
119–163.

[34] K. Helsgaun, Solving the equality generalized traveling salesman prob-
lem using the Lin–Kernighan–Helsgaun Algorithm, Mathematical Pro-
gramming Computation 7(3) (2015), pp. 269-287.

[35] I.T. Hernádvölgyi, Solving the Sequential Ordering Problem with Auto-
matically Generated Lower Bounds, Operations Research Proceedings
2003, pp 355-362.

[36] D. Karapetyan and G. Gutin, Lin–Kernighan heuristic adaptations for
the generalized traveling salesman problem, European Journal of Oper-
ational Research 208(3) (2011), pp. 221–232.

[37] S. Lin and B.W. Kernighan, An Effective Heuristic Algorithm for the
TravelingSalesman Problem, Operations Research 21(2) (1973), pp. 498-
516.

[38] YS. Myung, CH. Lee, DW. Tcha, On the generalized minimum spanning
tree problem, Networks 26(4) (1995), pp. 231-241.

Bibliography 45

[39] C.E. Noon and J.C. Bean, A Lagrangian Based Approach for the Asym-
metric Generalized Traveling Salesman Problem, Operations Research
39(4) (1991), pp. 623-632.

[40] C.E. Noon and J.C. Bean, An Efficient Transformation Of The General-
ized Traveling Salesman Problem, INFOR 31(1) (1993), pp. 39-44.

[41] J.V. Potvin, G. Lapalme. J-M. Rousseau, A Generalized K-Opt Exchange
Procedure For The MTSP, INFOR 27(4) (1989), pp. 474-481.

[42] R. Salman, J.S. Carlson, F. Ekstedt, D. Spensieri, J. Torstensson, R.
Söderberg, An industrially validated CMM inspection process with se-
quence constraints, Procedia CIRP Volume 44 (2016), pp. 138-143.

[43] H.D. Sherali and P.J. Driscoll, On Tightening The Relaxations Of Miller-
Tucker-Zemlin Formulations For Asymmetric Traveling Salesman Prob-
lem, Operations Research 50(4) (2002), pp. 656-669.

[44] G. Shobaki and J. Jamal, An exact algorithm for the sequential ordering
problem and its application to switching energy minimization in com-
pilers, Computational Optimization and Applications 61(2) (2015), pp
343-372.

[45] S.L. Smith and F. Imeson, GLNS: An effective large neighborhood search
heuristic for the Generalized Traveling Salesman Problem, Computers &
Operations Research 87 (2017), pp. 1-19.

[46] L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the
generalized traveling salesman problem, European Journal of Opera-
tional Research 174 (2006), pp. 38–53.

[47] S. Somhom, A. Modares, T. Enkawa, Competition-based neural net-
work for the multiple travelling salesmen problem with minmax objec-
tive, Computers & Operations Research 26 (1999), pp. 395—407.

[48] P. Toth and D. Vigo, The Vehicle Routing Problem, Society for Industrial
and Applied Mathematics (2002).

[49] D.P. Williamson, Analysis of the Held-Karp lower bound for the asym-
metric TSP, Operations Research Letters 12(2) (1992), pp 83-88.

Paper I

Available online at www.sciencedirect.com

Procedia CIRP 00 (2016) 000–000
www.elsevier.com/locate/procedia

6th CIRP Conference on Assembly Technologies and Systems (CATS)

An industrially validated CMM inspection process with sequence constraints
Raad Salmana,*, Johan S. Carlsona, Fredrik Ekstedta, Domenico Spensieria, Johan Torstenssona,

Rikard Söderbergb

aFraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden
bWingquist Laboratory, Chalmers University of Technology, 412 96 Gothenburg, Sweden

∗ Corresponding author. Raad Salman, Tel.: +46-739-837573; E-mail address: raad.salman@fcc.chalmers.se

Abstract

An efficient CMM inspection process implemented in industry gives significant productivity improvements. A key part of this improvement is
the optimization of the inspection sequences. To ensure quality of the inspection the sequences are often constrained with respect to the order
of the measurements. This gives rise to so called precedence constraints when modelling the inspection sequence as a variation of the travelling
salesperson problem (TSP). Two heuristic solution approaches and a generic optimizing algorithm are considered. A generation based stochastic
algorithm is found to reduce cycle time by as much as 12% in comparison to the currently used algorithm.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS).

Keywords: CMM; inspection; automation; task sequences; precedence constraints; generalized travelling salesman problem; sequential ordering problem

1. Introduction

Many products such as car and truck bodies, engines, med-
ical prosthesis, mobile phones, and lumbering equipment de-
pend visually and functionally on its geometry. Since varia-
tion is inherent in all production processes, consistent efforts in
styling, design, verification and production aiming at less geo-
metrical variation in assembled products, is a key to shortening
development time of new products, as well as for choosing an
efficient and resource-economic production process. The activ-
ities aiming at controlling geometrical variation throughout the
whole product realization process are called the geometry as-
surance process. Figure 1 shows a general model for product
realization consisting of a concept phase, a verification phase
and a production phase.

The geometry assurance process, as defined in [1], relies on
inspection data in all phases. Product concepts are analyzed
and optimized to withstand the effect of manufacturing varia-
tion and tested virtually against available production data often
based on carry over type of inspection. In the verification and
pre-production phase the product and the production system is
physically tested and verified. Adjustments are made to both
product and production system based on inspection data. In full
production the focus is to control the process and to detect and
correct errors by analyzing inspection data. These inspection
data are often collected before, during and after important as-

Fig. 1. A general model for product realization and the main activities of the
geometry assurance process.

sembly steps. In this way, important assembly issues as part,
fixture and joining errors can be detected and corrected in an
efficient manner.

Therefore, the inspection preparation and measuring is an
important activity and this paper presents an industrial validated
closed loop from inspection preparation to automatic efficient
off-line programming of automated measurement equipment.
Then the focus is on improving the sequence optimization part
of it by solving precedence constrained generalized travelling
salesperson problem.

2212-8271 c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS).

2 R. Salman et al. / Procedia CIRP 00 (2016) 000–000

2. An Efficient Process for Inspection Preparation and Pro-
gramming

The efficient inspection process implemented to support pro-
gramming of automated inspection devices is built up by five
main steps; (i) define the inspection task by breaking down
product and process requirements to geometrical inspection
features, e.g. a hole or a slot, on part and subassembly level
(Figure 2), (ii) create parameterized inspection rules that de-
fine how a feature should be measured, i.e. number of points,
distribution, coordinate system, and probe cones, (iii) perform
feature accessibility analysis to find a set of probe configura-
tions of minimum size that can reach all inspection points with
collision free CMM configurations (Figure 3), (iv) plan by math
based algorithms for motion planning and combinatorial opti-
mization the collision free motions and sequence of the mea-
surement equipment to visit each feature, and (v) generate the
control code, e.g. DMIS to instruct the equipment to perform
the actual measurement.

Fig. 2. An inspection task is defined by breaking down the product quality ap-
pearance requirement (right picture) on gap and flushes to boot and rear fender
part inspection points (right picture).

This process has been industrially evaluated and used by e.g.
Volvo Cars to program all automated inspection devices since
2011. The results show an improvement in inspection prepara-
tion time of 75% and productive increase in equipment utiliza-
tion of 25%. The experience is also that the inspection prepara-
tion process becomes more structured and thereby reusable to a
larger extent than previously.

2.1. Parameterized Inspection Rules

As mentioned, part of the process is to create parameterized
inspection rules for the most commonly used inspection fea-
tures in practice, i.e. surface point, edge point, circular hole,
oval hole, rectangular hole, sphere, and cylinder [2,3]. The pa-
rameterization describes the inspection rule in terms of number
of points, positions and probe configurations, and the allowed
deviation from the ideal/default rule [4]. Today, it is common
that the CMM embedded software contains the inspection rules
and decides the motion patterns and sequence during feature in-
spection. However, the proposed approach with parameterized
inspection features has four key advantages: (i) it makes the in-
spection preparation flexible, structured and repeatable, (ii) the
same control code can be used with CMMs of different brands
with more consistent results, (iii) the inspection sequence inside
and between features can be optimized together to minimize cy-

Fig. 3. Approachability illustrated; It should be possible to perform a linear
motion along the inspection direction from a specified approach point and that
the probe sphere/tip should make contact with the inspection point during that
motion without any further collisions. The red arrow represents the normal of
the inspection point.

cle time, (iv) if the default inspection rule is not feasible due to
collisions then the conflict can automatically be resolved by us-
ing the allowed deviation from the default rules. In Figure 4,
as an example, the parameterized inspection rule for a circle is
defined and illustrated.

Fig. 4. A parameterized inspection rule of circle feature.

2.2. Automatic Path Planning

The next technology used is path planning where the colli-
sion free CMM motions are generated by automatically find-
ing via points and probe reorientations between the inspection
features [5,6,15]. Complete path planning algorithms, which al-
ways find a solution or determine that none exist, are of little in-
dustrial relevance since they are too slow. In fact, the complex-
ity of the problem has proven to be PSPACE-hard for polyhe-
dral object with polyhedral obstacles [7]. Therefore, sampling
based techniques trading completeness for speed and simplic-
ity is the choice. Common for these methods are the needs for
efficient collision detection, nearest neighbor searching, graph
searching and graph representation. The two most popular

R. Salman et al. / Procedia CIRP 00 (2016) 000–000 3

methods are; Probabilistic Roadmap Methods (PRM) [8] and
Rapidly-Exploring Random Trees (RRT) [9]. These methods
have been extended and tailored in several ways, for example
in [10]. Inspired by these probabilistic methods FCC has devel-
oped a deterministic path planner that adaptively adjusts a grid
in the configuration space.

2.3. Inspection Sequence Optimization

Data generated by the inspection rule analysis and path plan-
ning can then be used to optimize task sequences for robot
stations, such as automated welding or measuring. Such opti-
mization can reduce cycle time by as much as 25% and thereby
greatly increase efficiency of production [11]. Task sequences
can be discretized and modelled as a travelling salesperson
problem (TSP) or some variation of it [12]. Introducing in-
creasingly complex attributes to the problem such as different
ways to complete each task, precedence constraints and/or sev-
eral robot arms working on the same object requires the TSP
model to be more advanced.

The precedence constraints are introduced by hierarchical
relations between features since some features are required to
be measured in relation to other features. Typically, to be able
to measure some features there is a need for a local alignment.
The alignment is a coordinate system calculated from group of
measured/actual features. This type of local measurement cre-
ates hierarchical relations between features and thus imposes
precedence constraints. However, this should not be confused
with evaluating features in relation to each other. Sequence con-
straints are only introduced when features are physically mea-
sured in relations to other features. Spitz and Requicha [14]
solved a constraint satisfaction problem to handle this. This
paper will instead incorporate this directly in the TSP solution.

Therefore, this paper consider the case of optimizing the
precedence constrained task sequence of a single arm CMM
robot station where each task can be performed in several dif-
ferent ways. Since a CMM has five degrees of freedom, each
point can be approached from many different angles and thus be
evaluated in a multitude of ways. To model these characteris-
tics, one can discretize a subset of the different ways in which a
point can be measured and constrain the order of the points be-
ing evaluated. Given such a discretization and set of precedence
constraints one can model the problem of minimizing the total
cycle time as a precedence constrained generalized travelling
salesperson problem (PCGTSP).

Since the PCGTSP is an extension of the GTSP it is also an
NP-hard problem [17]. So as with many other NP-hard prob-
lems, using exact optimizing algorithms for solving larger prob-
lem instances are often impractical and heuristic algorithms are
implemented instead [23]. The PCGTSP is similar to two other
well-studied variations of the TSP, the sequential ordering prob-
lem (SOP) [21–26] and the generalized TSP (GTSP) [16–20],
but the PCGTSP has not been extensively studied itself. There-
fore, there is a need to develop and evaluate heuristic algorithms
for the PCGTSP and their effectiveness on real industrial appli-
cations which is what this paper aims to do.

2.4. Results from Volvo Cars

At Volvo Cars a new vehicle program is inspected with typi-
cally 700 inspection programs containing up to 25 000 features.

By implementing this efficient process for inspection the prepa-
ration and programming time have been estimated to be reduced
by 75% and the equipment utilization has been improved by
25% more efficient programs. Some examples from the inspec-
tion process implementation at Volvo Cars can be seen in Fig-
ures 5-7.

Fig. 5. Feature accessibility analysis resulting in five different collision free
probe configuration inspection alternatives (courtesy of Volvo Cars).

Fig. 6. An automatic generated collision free path between two features con-
taining a non-trivial necessary probe change in the middle. Movement shown
by transparent probe states (courtesy of Volvo Cars).

Fig. 7. An optimized collision free inspection sequence (blue trajectory) for
20 features containing 115 points, calculated by the system (courtesy of Volvo
Cars).

The rest of the paper will proceed as follows. In Section

4 R. Salman et al. / Procedia CIRP 00 (2016) 000–000

3 the PCGTSP is described. Section 4 describes the different
solving methods which are evaluated in this paper and Section
5 presents the results when testing these methods on some real
industrial cases. Finally, Section 6 presents some final conclu-
sions and suggestions for future research.

3. Problem description

The PCGTSP is a variation of the TSP where the node set is
partitioned into groups and then precedence constraints are en-
forced on a group level, i.e. such that the groups are required to
precede each other (but not necessarily directly) in a solution.
Because the PCGTSP solution represents a sequence of tasks
(modelled as groups) where each task can be performed in dif-
ferent ways (modelled as nodes) it is natural to have the prece-
dence constraints enforced on a group level, since the tasks are
required to precede each other.

Let n be the number of nodes in a problem instance and
let V := {1, . . . , n} denote the set of all nodes. Let A :=
{(i, j) : i, j ∈ V, i , j} denote the set of all (directed) arcs be-
tween all nodes and let ci j, i, j ∈ V , denote the cost associated
with the arc from node i to node j. Let M := {1, . . . ,m} denote
the set of all group indices and let V1, . . . ,Vm be a partition of
V where Vp, p ∈ M, is called a group. The partition of V must
satisfy Vp , ∅, V = ∪p∈MVp and Vp ∩ Vq = ∅ when p , q. Let
the precedence constraints be defined by sets which are denoted
as PGq := {p ∈ M : group p must precede group q in the tour},
q ∈ M. For these applications a start group, pstart, which con-
sists of a single node is specified as the starting position of the
robot as well. The PCGTSP is then to find a tour starting from
pstart such that one node in every group is visited exactly once,
the precedence constraints are satisfied and the sum of the cost
associated with the traversed arcs is minimized.

When attempting to solve the PCGTSP one can view it as
two subproblems: group sequence and node choice, i.e. the or-
der in which the groups are visited and the choice of the node
that is to be visited in each group. The group sequence subprob-
lem requires a fixed selection of which node that is to be visited
within each group while the node selection subproblem requires
a fixed order of the groups to be solved. While there is a clear
dependency between these subproblems, heuristic solving al-
gorithms which separate or combine them to different degrees
have, however, been shown to be efficient for the GTSP without
precedence constraints [19,20].

4. Solution approaches

In this paper two different approaches for solving the
PCGTSP are presented. The first approach is a determinis-
tic algorithm which successively expands the set of groups
as their precedence constraints are satisfied and uses a high
performance heuristic algorithm designed for the GTSP as a
lower level solver. The second approach is a stochastic algo-
rithm based on an Ant Colony System (ACS) metaheuristic hy-
bridized with a special purpose local search. This algorithm has
been very successful for the SOP [23,24] and was shown to per-
form quite well for larger problem instances when generalized
to the PCGTSP [13]. The generic optimizing software CPLEX
is also considered as a solution approach and as a method for
obtaining lower bounds.

4.1. CPLEX software

The CPLEX solver uses an advanced but generic method of
branch-and-cut to optimize mixed integer linear programming
(MILP) formulations of optimization problems. The MILP for-
mulation of the PCGTSP first proposed by Salman in [13] is
used to study the effectiveness of such a generic optimizing
method in the industrial cases considered in this paper. CPLEX
is used for completely solving the PCGTSP to optimality as
well as solving the linear programming (LP) relaxed PCGTSP
where the integrality constraints are relaxed and a lower bound
on the minimal tour length is obtained.

4.2. Sequentially Expanding GTSP (SEG) solver

The general algorithm for the SEG solver is as follows:

Algorithm 1 Sequentially Expanding GTSP

1. Set k = 1 and initialize a path P1 = {pstart}.
2. Set U = {p ∈ M : group p is allowed to be visited

given the path Pk}.
3. Let the GTSP solver expand the path

Pk = {Pk
1, P

k
2, · · · , P

k
l }, l ≤ m using the groups in U.

4. If Pk visits all groups in M then add a final arc between
Pk

m and Pk
1 to the path Pk, reoptimize the node selection

and exit.
5. For each j = 1, · · · , l check if any groups in M are allowed

to be visited given the path Pk j = {Pk
1, · · · , P

k
j}. As soon

as one or several groups in M are allowed to be visited for
some Pk j then set Pk+1 = Pk j , set k = k + 1 and go to step
2.

The SEG solver approach handles the precedence constraints
implicitly and is also constructive in its nature, meaning that it
is deterministic and does not iteratively improve the solution.
The benefit of the SEG algorithm is that any GTSP solver can
be used in conjunction with this general strategy and one can
therefore utilize the many effective solving algorithms which
have been developed for the GTSP. A potential drawback is the
short-sightedness of the algorithm since it only considers the
groups allowed to be visited in the graph given a current path
constructed by the GTSP solver.

4.3. Hybridized Ant Colony System (HACS)

The idea for the ACS algorithm is to model a fixed num-
ber of ants, N, that iteratively generate feasible solutions to the
PCGTSP by traversing arcs, (i, j) ∈ A, in a non-deterministic
manner. In each iteration the generation of paths is guided by
the depositing of ”pheromones”, which are denoted τi j ∈ [0, 1],
along the arcs that have been traversed by the ant which has
produced the shortest tour. The higher the value of τi j, the
higher the probability that arc (i, j) is chosen during the process
of generating paths. For each arc (i, j) ∈ A a fixed parameter
ηi j ∈ [0, 1] is initialized as ηi j = 1/ci j. This parameter is called
the visibility parameter and provides a fixed measurement of
how attractive the corresponding arc is for the ants.

However, to avoid getting stuck at locally optimal solutions
and to promote diverse solutions the ACS algorithm incorpo-

R. Salman et al. / Procedia CIRP 00 (2016) 000–000 5

rates a so-called evaporation rate parameter ρ ∈ [0, 1]. Let
T k = (T k

1 , . . . ,T
k
m) be the shortest tour in iteration k. At the

end of each iteration k the pheromone levels are updated as
τi j = (1 − ρ)τi j + ρ/CT k where CT k is the total cost of tour
T k. Furthermore, during the path generation process, if an ant
chooses to traverse an arc (i, j), the pheromone level of that
arc is updated as τi j = (1 − ρ)τi j + ρτ0 where τ0 is the initial
pheromone level parameter. The ACS algorithm also introduces
a probability d0 ∈ [0, 1] that the arc chosen by an ant during the
path generation is the arc which is the most attractive. Other-
wise, i.e. with probability (1 − d0), an arc (i, j) is chosen with
probability

pa
i, j =

 [τi j]α[ηi j]β∑
l∈V(Ta)[τil]α[ηil]β

if j ∈ V(T a)
0 otherwise

(1)

where α and β be parameters that control the relative impor-
tance of the pheromone level and the visibility parameter and
V(T a) is the set of allowed nodes given a tour T a of ant a.

4.3.1. Local search
After each tour generated by the ACS metaheuristic a local

search procedure is executed. First, the node selection of the
tour is fully optimized given a fixed order of the groups through
a dynamic programming algorithm [13,16,19].

Fig. 8. (A) is an example of a path preserving 3-opt move. (B) is an example of
a path inverting 3-opt move.

Then a highly efficient 3-opt local search [23] is performed.
The k-opt local search heuristic removes k arcs from an existing
tour and adds k arcs such that the tour becomes improved. This
3-opt local search was specifically developed to handle prece-
dence constraints by excluding certain 3-opt moves from the
search and was found to perform better than many other k-opt
local search heuristics when generalized to the PCGTSP [13].
By excluding so-called path inverting 3-opt moves, i.e. moves
that inverts the orientation of one or several segments of the tour
(see Figure 8), the algorithm reduces the time spent on verify-
ing that the precedence constraints are satisfied and verifying
the improvement condition of a 3-exchange. Furthermore, the
3-opt local search employs a special labelling procedure which
makes the verification of the precedence constraints even more
efficient.

When a tour which can not be improved further by the 3-
opt local search is found, the node selection is fully optimized
again.

5. Computational experiments and results

Five problem instances derived from CMM inspection cases
of various sizes are studied. Each problem instance is evaluated
using the three solution approaches described in Section 4.

The CPLEX software was run with a 24 hour time limit and
was run for the LP relaxed problem as well as the original MILP
problem for each instance.

The HACS algorithm was run 10 times with 10 ants and 100
iterations per run. The parameters were set to ρ = 0.1, α = 1,
β = 2, d0 = 0.9 and τ0 = 1/(mCu) where Cu is an upper bound
on the minimal tour length. Also, the local search is only run
for a generated tour if the cost is within 20% of the best one
found so far. This heuristic rule as been found to be benificial
in [24].

Let z be the sum of costs ci j for the arcs (i, j) traversed in a
solution. An optimal solution is then the shortest possible tour
given the graph of a problem instance.

Table 1. Results from CPLEX. z∗LP is the minimal solution for the LP relaxed
problem and z∗MILP is the minimal tour length for the original MILP problem.
TLP is the time for the LP relaxed problem and TMILP is the time for the original
MILP problem.

Instance m n z∗LP TLP (s) z∗MILP TMILP (s)

cmm001 13 15 48.85 0.03 49.12 0.03
cmm002 16 25 7.60 0.03 20.26 1.86
cmm003 18 36 11.43 0.19 20.04 0.41
cmm004 91 216 23.00 3936.43 - >86400
cmm005 174 405 - >86400 - >86400

Table 1 shows the tour lengths when running the problem
instances in the generic optimizing software CPLEX. For the
two larger problems, cmm004 and cmm005, CPLEX was not
able to find an optimal solution within the time limit of 24 hours
and for cmm005 CPLEX was not able to solve the LP relaxation
to optimality within the time limit either.

Table 2. Tour lengths and average running times for the heuristic algorithms.
zbest

HACS is the best (shortest) tour length out of 10 runs. THACS and TSEG is the
average time for completing a run.

Instance m n zSEG TSEG (s) zbest
HACS THACS (s)

cmm001 13 15 49.12 0.01 49.12 6.93
cmm002 16 25 20.48 0.02 20.73 9.56
cmm003 18 36 20.46 0.02 20.04 6.69
cmm004 91 216 48.31 2.80 46.07 286.91
cmm005 174 405 212.23 22.03 185.83 698.52

Table 2 shows the results from the heuristic algorithms. For
the smaller instances, cmm001-003, the difference in solution
quality is marginal. For cmm004 the HACS algorithm performs
a bit better than the SEG solver and for cmm005 the solution
produced by the HACS algorithm is significantly better. While
the HACS algorithm is much slower than the SEG solver, Ta-
ble 3 suggests that the number of iterations can probably be

6 R. Salman et al. / Procedia CIRP 00 (2016) 000–000

Table 3. More detailed results for the HACS algorithm. zavg
HACS is the average

solution found for an instance over 10 runs. Tbavg is the average running time
and Ibavg is the average number of iterations elapsed before the best solution is
found by the HACS algorithm in each run.

Instance m n zbest
HACS zavg

HACS Tbavg (s) Ibavg

cmm001 13 15 49.12 49.12 0.02 1
cmm002 16 25 20.73 20.73 0.20 2
cmm003 18 36 20.04 20.11 1.36 13
cmm004 91 216 46.07 46.98 176.56 54
cmm005 174 405 185.83 187.61 237.63 33

lowered by almost 50% without any significant loss of solution
quality for these problem instances.

6. Conclusions and future research

The productivity of the CMM inspection process and equip-
ment is significantly improved by a structured inspection prepa-
ration process combined with automatic path planning. Inspec-
tion sequence optimization is an important part of the improve-
ment. In this paper, the optimization part related to inspection
sequence precedence constraints is further improved.

The presented HACS algorithm is able to reduce cycle time
of the largest case by more than 10% on average in comparison
to the now used SEG solver and while it is much slower, the
number of iterations can probably be significantly tightened for
the studied cases without losing much in terms of solution qual-
ity. The results from the CPLEX software shows the need for
developing heuristic algorithms and special purpose optimizing
algorithms for the PCGTSP.

Further development of the MILP model in conjunction with
the optimizing algorithms might enable optimization of small
to medium sized problem instances within reasonable compu-
tation times. For some industrial cases there arises a need for
multiple CMMs evaluating features on the same object which
corresponds to expanding the PCGTSP to a precedence con-
strained generalized multiple travelling salesperson problem
(PCGmTSP).

Acknowledgements

This work was carried out within the Wingquist Laboratory
VINN Excellence Centre, supported by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA). It is also
part of the Sustainable Production Initiative and the Production
Area of Advance at Chalmers University of Technology.

References

[1] R. Söderberg, L. Lindkvist, J.S. Carlson, Virtual Geometry Assurance for
Effective Product Realization, 1st Nordic Conference on Product Lifecycle
Man- agement – NordPLM’06; 2006, Göteborg, Sweden.

[2] M.R. Henderson, D.C. Anderson, Computer Recognition and Extraction of
Form Features: A CAD/CAM Link, Computers in Industry; 1984, vol. 5,
pp. 329-339.

[3] H.C. Lee, W.C. Jhee, H. S. Park, Generative CAPP Through Projective
Feature Recognition, Computers and Industerial Engineering; 2007, vol.
53, pp. 241-246.

[4] F. Zhao, X. Xu, S.Q. Xie, Computer Aided Inspection Planning: The state
of the art, Computer Aided design; 2009, vol. 60(2), pp. 453-466.

[5] C.W. Ziemian, D.J. Medeiros, Automating probe selection and part setup
planning for inspection on a coordinate measuring machine, International
Journal of Computer Integrated Manufacturing; 1998, vol. 11(5), pp. 448-
460.

[6] C.W. Ziemian, D.J. Medeiros, Automated feature accessibility algorithm
for inspection on a coordinate measuring machine, International Journal of
Production Research; 1997, vol. (35)10, pp. 2839-2856.

[7] J.F. Canny, The Complexity of Robot Motion Planning, MIT Press; 1988.
[8] R. Bohlin, L.E. Kavraki, Path Planning Using Lazy PRM, In: Proc. IEEE

Int. Conf. On Robotics and Automation; 2000.
[9] S.M. LaValle, J.J. Kuffner, Randomized Kinodynamic Planning, In: Proc.

IEEE Int. Conf. on Robotics and Automation; 1999.
[10] S. Karaman, E. Frazzoli, Sampling-based Algorithms for Optimal Motion

Planning, International Journal of Robotics Research; 2011, vol. 30, iss. 7,
pp. 846-894.

[11] J. Segeborn, D. Segerdahl, F. Ekstedt, J.S. Carlson, M. Andersson, R.
Söderberg, “An Industrially Validated Method for Weld Load Balancing
in Multi Station Sheet Metal Assembly Lines”, ASME Journal of Manu-
facturing Science and Engineering; 2013.

[12] S. Björkenstam, D. Spensieri, J.S. Carlson, R. Bohlin, D. Gleeson, Efficient
Sequencing of Industrial Robots through Optimal Control, Procedia CIRP
2014, vol 23, pp. 194-199.

[13] R. Salman (2015), Algorithms for the precedence constrained gen-
eralized travelling salesperson problem (Master’s thesis), Retrieved
from http://www.chalmers.se/en/departments/math/research/research-
groups/optimization/Pages/master-thesis-projects.aspx.

[14] S.N. Spitz, A.A.G. Requicha, Hierarchical Constraint Satisfaction for Di-
mensional Inspection Planning, Proceedings of the 1999 IEEE Interna-
tional Symposium on Assembly and Task Planning, Porto, Portugal, July
1999.

[15] A.J. Spyridi, A.G. Requicha, Accessibility analysis for the automatic in-
spection of mechanical parts using coordinate measuring machines, Inter-
national conference on Robotics and Automation; 1990, pp.1284-1289.

[16] M. Fischetti, J.J. Salazar Gonsalez, P. Toth, A Branch-And-Cut Algorithm
for the Symmetric Generalized Traveling Salesman Problem, Operations
Research; 1997, vol 45, pp. 378–394.

[17] I. Kara, H. Guden, O.N. Koc, New Formulations for the Generalized Trav-
eling Salesman Problem, In Proceedings of the 6th International Con-
ference on Applied Mathematics, Simulation, Modelling, ASM’12, pp.
60–65, Stevens Point, Wisconsin, USA, 2012. World Scientific and En-
gineering Academy and Society (WSEAS).

[18] D. Karapetyan, G. Gutin, Lin-Kernighan Heuristic Adaptation for the Gen-
eralized Trav- eling Salesman Problem, European Journal of Operational
Research; 2011, vol 208, pp. 221–232.

[19] D. Karapetyan, G. Gutin, Local Search Algorithms for the Generalized
Traveling Salesman Problem. European Journal of Operational Research;
2012, vol 219, pp. 234–251.

[20] G. Gutin, D. Karapetyan, N. Krasnogor, Memetic Algorithm for the Gen-
eralized Asymmetric Traveling Salesman Problem, In Nature Inspired Co-
operative Strategies for Optimization (NICSO 2007), vol 129 of Studies
in Computational Intelligence, pp. 199– 210, Springer Berlin Heidelberg;
2008.

[21] S.C. Sarin, H.D. Sherali, A. Bhootra, New tighter polynomial length for-
mulations for the asymmetric traveling salesman problem with and with-
out precedence constraints, Operations Research Letters; 2005, vol 33, pp.
62–70.

[22] N. Ascheuer, M. Jünger, G. Reinelt, A Branch & Cut Algorithm for the
Asymmetric Traveling Salesman Problem with Precedence Constraints,
Computational Optimization and Applications; 2000, vol 17, pp. 61–84.

[23] L.M. Gambardella, M. Dorigo, An Ant Colony System Hybridized with a
New Local Search for the Sequential Ordering Problem, INFORMS Jour-
nal on Computing; 2000, vol 12, pp. 237–255.

[24] L.M. Gambardella, R. Montemanni, D. Weyland, An Enhanced Ant
Colony System for the Sequential Ordering Problem, In Operations Re-
search Proceedings 2011, Operations Research Proceedings, pp. 355–360,
Springer Berlin Heidelberg; 2012.

[25] D. Anghinolfi, R. Montemanni, M. Paolucci, L.M. Gambardella, A hybrid
particle swarm optimization approach for the sequential ordering problem,
Computers & Operations Research; 2011, vol 38, pp. 1076–1085.

[26] J. Sung, B. Jeong. An Adaptive Evolutionary Algorithm for Traveling
Salesman Problem with Precedence Constraints. The Scientific World Jour-
nal, 2014, 2014.

Paper II

Branch-and-bound for the Precedence Constrained Generalized

Traveling Salesman Problem

Raad Salman1*

salman@fcc.chalmers.se

Fredrik Ekstedt1

fredrik.ekstedt@fcc.chalmers.se

Peter Damaschke2

ptr@chalmers.se

*Corresponding author.
1Fraunhofer-Chalmers Centre, Chalmers Science Park, 412 88 Gothenburg, Sweden
2Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Gothenburg,
Sweden

October 18, 2017

Abstract

The Precedence Constrained Generalized Traveling Salesman Problem (PCGTSP) asks to find a
cheapest closed tour through groups of vertices, visiting one vertex from each group and respecting
precendence constraints between certain pairs of groups. While the Generalized TSP (GTSP) and
the precedence constrained TSP are well-known problems, powerful optimization methods for the
combination of both problems are lacking so far. This paper presents a branch-and-bound method
for the PCGTSP. Different ways to bound the subproblems in the search tree by transformations
and relaxations are evaluated. Our algorithm incorporates shortest-path calculations and utilizes
history from the search tree evaluation to limit branching. We also introduce an apparently new way
of using the assignment problem to get lower bounds for the GTSP. Results show that the algorithm
solves problem instances with 12-26 groups within a minute, and instances with around 50 groups
which are more dense with precedence constraints within 24 hours on a PC with an Intel i7-6700k
CPU and 32GB of RAM.

Keywords: generalized traveling salesman problem; precedence constraints; sequential ordering
problem; branch-and-bound; assignment problem; minimum spanning arborescence problem

1 Introduction

In this paper we consider the precedence constrained generalized traveling salesman problem (PCGTSP).
This variant of the asymmetric traveling salesman problem (ATSP) is defined on a directed, edge-weighted
graph where the set of all vertices is partitioned into a number of disjoint sets called groups. Furthermore,
pairwise relationships between groups, called precedence constraints, dictate that for some groups others
must precede them in any feasible solution. The PCGTSP asks to find a minimum-cost closed tour
(starting at a specified start group and eventually returning) such that exactly one vertex in each group
is visited in a valid order with respect to the precedence constraints. Informally, we seek the cheapest
Hamiltonian tour through the groups that also respects the precedence constraints. Problems of this type
can arise, for example, in industrial processes where tasks which can be performed in many different ways
are to be sequenced with respect to some order which ensures the integrity of the process. Optimizing
such sequences of tasks is of great importance when striving for sustainable and efficient manufacturing.

1.1 Related Literature

PCGTSP is closely related to the sequential ordering problem (SOP) and the generalized TSP (GTSP),
both of which have been studied extensively. In [13] Escudero et al. present a Langrangian relaxation
scheme for obtaining lower bounds for the SOP. To incorporate the precedence constraints in the bounds,
a set of cuts are generated when solving each Lagrangian subproblem. Ascheuer et al. [4] develop a

1

branch-and-cut algorithm for the SOP with many new valid inequalities based on the work of Balas et
al. in [6] and Ascheuer in [2]. Balas [5] shows that the precedence constrained ATSP (which is equivalent
to the SOP) is solvable by a dynamic programming algorithm (first presented for the TSP by Held & Karp
in [20]) in linear time if certain conditions on the precedence constraints are met. Hernádvölgyi [22] and
Cire & Hoeve [9] obtain bounds on the SOP by restricting the state space of the dynamic programming.
Gouveia & Ruthmair develop a branch-and-cut with many strong cuts for the SOP which closed many
open benchmark instances. Montemanni et al. [26] develop a decomposition based branch-and-bound
algorithm which attempts to solve the SOP by dividing an instance into smaller problems based on the
parital order imposed by the precedence constraints. Shobaki & Jamal [32] evaluate a branch-and-bound
algorithm with a simpler bounding algorithm but use a powerful pruning technique where information
from previous tree nodes is reused. Recently the branch-and-cut algorithm developed in [17] closed many
open benchmark instances for the SOP. Many different types of metaheuristic approaches such as genetic
algorithms, particle swarm optimization and ant colony optimization have been presented in [1, 16, 35]
amongst others. These are often fast but cannot guarantee optimality.

Fischetti et al. [15] present a branch-and-cut algorithm for the symmetric GTSP. They derive many
valid inequalities based on the investigation of the GTSP polytope in [14]. The asymmetric case of the
GTSP was considered by Laporte et al. in [24] where an integer programming formulation and branch-
and-bound algorithm is presented. Noon & Bean [28] present a Lagrangian dual based branch-and-bound
algorithm for the asymmetric GTSP. Bounds were obtained by solving either an assignment problem or
a TSP of size equal to the number of groups to optimality. Different types of heuristics valid for both
the symmetric and asymmetric GTSP have been developed and evaluated in [18,21,23,33,34].

The PCGTSP has recently attracted interest but still remains a largely unexplored problem. Chentsov
et al. [8] extend the work done by Balas in [5] and present a dynamic programming algorithm which is
able to solve PCGTSP instances within polynomial time under certain conditions. Dewil et al. in [11]
and Dewil et al. in [10] present heuristics for constructing and improving solutions for the laser cutting
tool problem which they model as a PCGTSP with some additional constraints. In [7] Castelino et al. use
a transformation to go from a problem with a partitioned vertex set to a problem which is unpartitioned.
The resulting SOP is then solved using heuristics developed by Ascheuer et al. in [3]. Salman et al. [30]
present heuristics for the PCGTSP with a focus on industrial applications and the surrounding process
which generates the problem.

1.2 Contribution and Outline

The main contributions of this paper are:

• Presenting a first exact branch-and-bound based algorithm for solving the PCGTSP.

• A new branching strategy where feasible sequences of groups are enumerated and shortest-path
calculations are utilized in order to formulate the subproblems.

• A comparison of different methods for bounding the subproblems.

• A generalization of the history utilization pruning method developed in [32].

• A novel way of computing an assignment problem based bound for the GTSP.

Section 2 describes the PCGTSP formally and introduces the notation used in the paper. In Section
3 the branch-and-bound algorithm, the different bounding methods and the history utilization technique
are presented. In Section 4 the algorithm is tested on industrial and synthetic instances, and in Section
5 the results of the tests are discussed and some suggestions for future development are given.

2 Problem Description

A PCGTSP instance P is defined by a directed graph G = (V,A) where V := {1, . . . , n} denotes the
set of vertices, A := {(i, j) : i, j ∈ V, i 6= j} denotes the set of arcs, and a cost cij is associated with
each arc (i, j) ∈ A. Additionally we let {V1, . . . , Vm} be a partition of V where Vp, p ∈ M , is called a
group, and let M := {1, . . . ,m}. For each vertex i ∈ V we define g(i) to be the index of the group which
contains vertex i, that is i ∈ Vg(i). We let the precedence constraints be defined by an acyclic digraph
G′ = (M,Π) so that if (p, q) ∈ Π then group p must precede group q in a feasible tour. Π includes all

2

relationships implied by the precedence constraints by transitivity. That is, if (p, q) ∈ Π and (q, r) ∈ Π
then (p, r) ∈ Π.

The PCGTSP then asks to find a minimum-cost closed tour such that exactly one vertex in each
group is visited and the precedence constraints are fulfilled. The tour must start and end in group V1,
therefore (1, q) ∈ Π for all q ∈ M \{1}. Note that in any feasible tour the precedence constraints apply
only to the path without the last arc returning to V1, whereas the cost of this last arc is included in the
sum of arc costs.

We use the integer variable vk to denote the group index sequenced at position k in the tour. Note
that for any feasible solution we will have that v1 = 1 since the group V1 is assumed to be the start
group.

3 Overview of Methods

We propose a branch-and-bound enumeration procedure where the PCGTSP is appropriately trans-
formed and relaxed in order to obtain lower bounds. Below, we will discuss branching strategies, the
various methods used for computing lower bounds and other methods used to limit branching. We will
use Cmin(·) as a generic notation for the cost of the optimal solution for a problem instance.

3.1 Branching

We have opted to branch on the group sequence variables vi which essentially means that each branch
corresponds to a choice of which group to visit next in the tour. While branching on Boolean edge
variables is a natural and common approach in an integer linear programming context, sequentially
building up the solution along each branch enables one to keep vertex selection undetermined which in
turn should limit the size of the search tree. Each node in the tree corresponds to a partial group sequence
σ = (V1, . . . , Vr). The subproblem at this node - the PCGTSP where any feasible tour is constrained to
begin with the group sequence σ - is denoted by P(σ).

By applying dynamic programming, the minimum-cost paths between each pair of vertices in V1

and Vr through σ may be computed incrementally. Based on this simple observation, we consider two
different ways of defining a reduced PCGTSP which could be used for computing lower bounds for P(σ).

Definition 1. Given a PCGTSP instance P and fixed sequence σ = (V1, . . . , Vr) of already chosen
groups, we define P1(σ) as the PCGTSP instance with

• the same precedence constraints as P,

• the same vertices and groups as P except for the inner groups of σ which are excluded,

• the same arc costs as P except for outgoing arcs from V1 and incoming arcs to Vr,

• arc costs from vertices in V1 to vertices in Vr given by the corresponding minimum path costs
through σ, and

• remaining outgoing arcs from V1 and incoming arcs to Vr are excluded.

Proposition 1. Cmin(P(σ)) = Cmin(P1(σ))

Proof. Follows from Definition 1.

As a consequence, any PCGTSP bound may be applied to P1(σ) to generate a bound for P(σ). The
second definition is aimed at separating the cost of the path along σ from the cost of the rest of the tour.

Definition 2. Given a PCGTSP instance P and a fixed sequence σ = (V1, . . . , Vr) of already chosen
groups, we define P2(σ) as the PCGTSP instance with

• the same precedence constraints as P,

• the same vertices and groups as P except for the inner groups of σ which are excluded,

• the same arcs costs as P except for outgoing arcs from V1 and incoming arcs to Vr,

• arc costs from V1 to Vr are set to zero, and

3

• remaining outgoing arcs from V1 and incoming arcs to Vr are excluded.

Let cmin(σ) be the cost of the shortest path through σ. Then the following holds:

Proposition 2.
Cmin(P(σ)) ≥ Cmin(P2(σ)) + cmin(σ) (1)

Proof. This follows since any tour of P(σ) may be split into one path along σ, and one path between
Vr and V1 obeying the precedence constraints. The former will have a cost that is at least cmin(σ) by
definition. The latter will have the same cost as the P2(σ) tour created by adding the proper arc between
V1 and Vr since all those arcs have zero costs. It then follows that this path will have a cost at least
Cmin(P2(σ)) by Definition 2.

Proposition 2 means that computing a lower bound for P2(σ) and adding cmin(σ) will result in a
valid lower bound for P(σ). The main reason for using this approach instead of that based on Defintion
1 is that many subproblems P2(σ) will be identical for different nodes in the branching tree. This may
be exploited to reduce computations and will be further explored in Section 3.5.

Equality in Proposition 2 is not guaranteed since the optimal P(σ) tour may have node selections for
V1 and Vr that do not match the optimal path for σ or the optimal P2(σ) tour or both. Obviously, any
PCGTSP bound may be applied to P2(σ) to achive a lower bound on P(σ) by adding the cost of the
cheapest path in σ.

We choose depth-first search as a branching strategy as this will rapidly deliver new upper bound
estimates and is also less memory intensive compared to other strategies such as breadth-first or best-
first. When selecting the next branch to explore among several possible at the same depth, we pick the
group Vp with the largest corresponding successor set {q : (p, q) ∈ Π}. By prioritizing large successor sets,
precedence constraints may be eliminated early in the branching, which should be beneficial considering
that the bounding methods which are evaluated in this paper relax these constraints. Furthermore, a
group with a particularly large successor set is likely to turn up early in an optimal tour. The hope is
that one will obtain better upper bounds when using this priority rather than branching in some other
order.

When a group sequence with m groups is reached, the vertex choice is optimized and a special 3-opt
heuristic [16] is applied. If the solution value obtained is lower than that of the current best upper bound
then the upper bound is updated.

3.2 Relaxation and Bounding

In the literature, lower bounds for ATSP have commonly been obtained by either relaxing the integrality
requirements on the variables in an integer linear program and solving the resulting linear program (LP),
or by relaxing some problem-specific constraints and then solving the resulting polynomial-time solvable
problem.

The two most common relaxations of the second type result in either a minimum spanning arbores-
cence problem (MSAP), or a minimum vertex-disjoint cycle cover problem, which is equivalent to the
assignment problem (AP). The MSAP is obtained by relaxing the so-called outdegree constraints which
dictate that each vertex should have only one outgoing arc, and the AP is obtained by relaxing the
subtour elimination constraints (SEC) which ensure that only one cycle occurs in the ATSP solution.

When applying relaxations of this sort to the asymmetric GTSP, the resulting combinatorial problems
are NP-hard. This was shown by Myung et al. for the generalized MSAP [27] and by Gutin and Yeo for
the generalized AP [19]. Since this excludes polynomial-time algorithms for these problems, using them
for bounding in a branch-and-bound scheme is impractical.

To circumvent this issue we can either transform the AGTSP to an equivalent ATSP (see [12,25,29]),
or relax the vertex choice constraints which allow only one vertex to be visited in each group. The latter
relaxation allows a solution to exit each group from any vertex regardless of where it entered. Therefore,
only the minimum cost arcs between the groups are relevant in this relaxed problem (see [28]).

Incorporating the precedence constraints in the bounding procedure is a more sophisticated matter.
These constraints have been modeled both as an exponential [13] and a polynomial [31] family of con-
straints, although the latter formulation requires auxiliary variables which complicate the model. In [13],
Escudero et al. introduce a bounding scheme for the SOP where the precedence constraints are taken
into account by introducing valid cuts based on the exponential family of constraints. However, because
of the complexity in handling a potentially exponential family of cuts in the bounding procedure we will
instead opt to drop the precedence constraints almost completely. In the following relaxed problems we

4

assume that if (p, q) ∈ Π then all arcs (j, i) such that i ∈ Vp and j ∈ Vq are excluded from the graph,
and otherwise ignore the precedence constraints. This GTSP without precedence constraints, which is
defined on a possibly less connected graph, will be referred to as the weak version of the PCGTSP.

3.3 Minimum Spanning Arborescence Problem

Relaxing the outdegree constraints in the weak version of the PCGTSP will give rise to the generalized
MSAP which requires a minimum cost directed tree (arborescence) such that exactly one vertex in each
group is included. To obtain an ordinary MSAP we define a relaxed problem and a transformed problem
which are defined on a non-partitioned vertex set.

Definition 3. For any PCGTSP instance P, let NC(P) be the ATSP instance defined on the graph
GNC = (M,ANC) where ANC = {(p, q) : p ∈M, q ∈M, (q, p) /∈ Π}. For every (p, q) ∈ ANC the arc costs
cNC
pq are defined as cNC

pq = min({cij : i ∈ Vp, j ∈ Vq}).
As shown in [28], NC(P) is equivalent to the weak GTSP version of P with the vertex choice constraint

relaxed. Solving NC(P) provides a lower bound on P but it is NP-hard as it constitutes an ATSP with
m vertices. However, a lower bound on NC(P) is obviously a lower bound on P.

For the transformed problem we will make use of the Noon-Bean transformation. It defines zero cost
arcs within every group such that its vertices are connected to form a directed cycle with some fixed
order. Furthermore, if a cycle in a group Vp is given the order v1, v2, . . . , vk then every outgoing arc cost
cvij , j ∈ Vq : q 6= p, is replaced by cvi+1j (with vk getting the outgoing arc costs of v1).

Definition 4. For any PCGTSP instance P, let NB(P) denote the ATSP instance which arises when
applying the Noon-Bean transformation [29] to the weak version of P. The modified arc costs are denoted
cNB
ij .

The problem NB(P) is to find a minimum-cost closed tour such that each vertex in V is visited
exactly once using the modified arc costs cNB

ij . Since NB(P) is an ATSP instance with n vertices with
an optimal solution which is equal to that of the weak version of the original PCGTSP, any lower bound
for this problem is also valid for the original PCGTSP.

Relaxing the outdegree constraints in NB(P) or NC(P) will result in an MSAP instance with n or
m vertices respectively. To further tighten the bound we will also add the minimum-cost incoming arc
to the root vertex of the arborescence. This is commonly done when bounding the ATSP with an MSA
and is known as a 1-arborescence [36].

3.4 Assignment Problem

By relaxing the subtour elimination constraints in NC(P) one obtains the cycle cover problem which
asks to find pairwise vertex-disjoint directed cycles that together cover every vertex exactly once, and
minimize the total cost of the arcs contained in these cycles. This problem can be equivalently formulated
as the assignment problem (AP). Create two copies M ′ and M ′′ of M . The copies of every vertex p ∈M
are denoted p′ and p′′ accordingly. Define a bipartite graph with bipartite sets M ′ and M ′′. For every
arc (p, q) create the arcs (p′, q′′) and (p′′, q′), having the same cost as (p, q). This yields a one-to-one
correspondence between the cycle covers in the given graph and the assignments in the constructed
bipartite graph.

Applying the same type of relaxation to NB(P) will potentially yield worse lower bounds as there
will exist one zero cost cycle in its graph for every group with |Vp| > 1, p ∈M . So it can be conjectured
that the more groups containing more than a single vertex in an instance of P, the weaker the bound
will be.

We derive an alternative to NC(P) when computing the AP bound by introducing so called L-paths:

Definition 5. In an instance of GTSP and for a fixed integer L ≥ 1, an L-path is a path of exactly L
arcs visiting L+ 1 groups. Let dL(p, q) denote the length of a shortest L-path whose start vertex is in p
and whose end vertex is in q. The L-th power of the GTSP instance is the directed graph with M as the
vertex set and arcs (p, q) with costs dL(p, q). Let this be denoted NCL(P).

Note that d1(p, q) is simply the minimum cost of all arcs from p to q and the resulting problem
corresponds to NC(P) defined in Definition 3 (i.e. NC(P) = NC1(P)). For every fixed L > 1 one can
compute the dL(p, q) in polynomial time, by doing L steps of the Held-Karp dynamic programming
method, but for arbitrary start vertices. Once the L-th power is generated, we can also compute a
minimum-cost cycle cover therein in polynomial time (as in any directed graph).

5

Proposition 3. The minimum cost of a cycle cover in the L-th power of a GTSP instance, divided by
L, is a lower bound on the cost of any tour.

Proof. Consider any tour through the groups, that is, any solution to GTSP. By re-indexing we assume
that the tour is (1, 2, . . . ,m). This tour contains the L-paths (i, i+ 1, . . . , i+ L), where i = 1, 2, . . . ,m,
and additions are meant modulo m (and m is used instead of 0). Clearly, every arc of the tour belongs
to exactly L of these L-paths. Hence the cost of the tour equals 1/L times the sum of the costs of all
these L-paths. Furthermore, every group in M is the start group and end group, respectively, of exactly
one of these L-paths. In other words, the arcs (i, i+ L) form a cycle cover in the L-th power.

Now let us replace the actual cost of each subpath (i, i + 1, . . . , i + L) of the considered tour with
dL(i, i+L). By definition of the dL(p, q) this can only decrease the costs. We conclude that 1/L times the
cost of the obtained cycle cover in the Lth power is a lower bound on the cost of the tour. Consequently,
a minimum-cost cycle cover in the Lth power is a lower bound on the optimal GTSP solution as well.

For ease of presentation the above reasoning was done for GTSP, that is, in the absence of precedence
constraints. Trivially, the lower bound from Proposition 3 remains valid for PCGTSP, since further
constraints can only raise the optimal tour costs. However we may obtain stronger lower bounds by
taking precedence constraints into account already in the definition (and calculation) of the distances
dL(p, q). In order to guarantee that every dL(p, q) remains smaller than or equal to the length of the
corresponding L-path in the tour, the precedence constraints must be treated carefully. We re-define
dL(p, q) as follows.

Definition 6. Let dL(p, q) be the length of a shortest L-path P which has its start vertex in p and its
end vertex in q, and satisfies the following conditions.
Case 1 /∈ P : For every i, j ∈ P such that (g(i), g(j)) ∈ Π, vertex i appears earlier than j in P .
Case 1 ∈ P : Let P0 be the subpath of P from p to 1, but excluding 1. Let P1 be the subpath of P from
1 to q, including 1. For every i, j ∈ P0 such that (g(i), g(j)) ∈ Π, vertex i appears earlier than j in P0;
and similarly for P1. Furthermore, there is no i ∈ P0 and j ∈ P1 with (g(i), g(j)) ∈ Π.

These “precedence-aware” dL(p, q) can still be computed by dynamic programming, and the coun-
terpart of Proposition 3 holds for them, because the proof literally goes through.

The rationale behind using L-paths with L > 1 can be described as follows. The bound for L = 1 is
simple, but it totally ignores the requirement that the tour must enter and leave every group through the
same vertex. As opposed to this, the inner vertices of an L-path satisfy this requirement. On the other
hand, an inner vertex of an L-path from p to q may have a short distance to p or q, but it might not
occur in the tour. Such constellations yield too small dL(p, q) values for the lower bound. We refer such
inner vertices as “bad via-vertices”. As a consequence, a larger L can make the lower bound stronger or
weaker, depending on the instance. Intuitively, larger L should in general work better for larger group
sizes.

3.4.1 Time Complexity

Fast computation of the dL(p, q) turns out to be crucial for the overall running time if the L-path bound
is used. In the following we consider L = 2.

Define d(p, v) as the length of a shortest arc from a group p to a vertex v, and define d(v, q) similarly.
Observe that d2(p, q) = minv d(p, v) + d(v, q), where v runs through all vertices outside the groups p
and q. (Precedence constraints are easily taken into account: A directed distance is infinite if there is a
precedence constraint in the opposite direction.)

Proposition 4. With n and m being the total number of vertices and groups, respectively, we can
compute all d2(p, q) in O(n2 +m2n) time.

Proof. First compute all d(p, v) and d(v, q). This takes O(n2) time, as one must consider every vertex v
and all adjacent vertices, and take the minima in all groups. Then apply the above formula for d2(p, q)
using these precomputed values. It takes O(m2n) time to consider all O(m2) pairs of groups and the n
inner vertices v for each pair. The total time is O(n2 +m2n).

Note that this time bound is subcubic in n, and only quadratic if we have a small number of large
groups.

6

3.5 History Utilization

In this section we will describe a generalization of the history utilization pruning technique developed
by Shobaki & Jamal in [32]. Since the vertex choice is never fixed during branching we are not able to
extend every part of the technique but the principal idea is still applicable.

The technique revolves around mainly two ideas: (1) there is a high probability of solving identical
bounding subproblems in the search tree, and (2) any optimal tour must include the shortest of all
feasible paths which start at the start group and end at any vertex which is included in the optimal tour.
Statement (2) is identical to the fact which enables dynamic programming for PCGTSP.

To describe the history utilization we first define equivalency between tree nodes.

Definition 7. For every pair (S, r), S ⊆ M , |S| > 1, and r ∈ S, we define T (S, r) to be the set of all
tree nodes whose group sequences begin at V1, traverse the groups in S (and no other groups), and end
at group Vr. Any two tree nodes belonging to the same set T (S, r) are said to be equivalent.

In the remainder of this section we consider an unprocessed tree node N (σ) ∈ T (S, r) with partial

group sequence σ = (V1, . . . , Vr). Let P
(σ)
ij be a shortest path between the vertex pair i ∈ V1 to j ∈ Vr,

through σ and let c(P
(σ)
ij) denote its costs. Also assume that P

(S,r)
ij is the shortest path from node i ∈ V1

to node j ∈ Vr which has been discovered during the branch-and-bound search, with c(P
(S,r)
ij) denoting

its cost. If no tree node in T (S, r) has been processed then c(P
(S,r)
ij) =∞.

Proposition 5. If c(P
(S,r)
ij) < c(P

(σ)
ij),∀(i, j) ∈ V1×Vr then there cannot exist a solution to the PCGTSP

which begins with the group sequence σ and has smaller total cost than a solution which begins with P
(S,r)
ij ,

∀(i, j) ∈ V1 × Vr. In other words, the tree node N (σ) can be pruned.

Proof. Take P
(S,r)
ij and P

(σ)
ij , (i, j) ∈ V1 × Vr, with c(P

(S,r)
ij) < c(P

(σ)
ij). Let the best solution which

includes P
(S,r)
ij have total cost z

(S,r)
opt and the best solution which includes P

(σ)
ij have total cost z

(σ)
opt. Now

assume that z
(σ)
opt < z

(S,r)
opt . Then, since c(P

(S,r)
ij) < c(P

(σ)
ij), we must have that

z
(σ)
opt − c(P (σ)

ij) < z
(S,r)
opt − c(P (S,r)

ij) ⇐⇒ z
(σ)
opt − c(P (σ)

ij) + c(P
(S,r)
ij) < z

(S,r)
opt (2)

The solution which includes σ includes a partial path (the complement of P
(σ)
ij in the solution)

σ̂ = (j, vL+1, vL+2, . . . , vm, i) with cost z
(σ)
opt − c(P (σ)

ij). Since P
(S,r)
ij and P

(σ)
ij start and end at the same

vertices we may concatenate P
(S,r)
ij and σ̂ to form a valid solution with cost z

(σ)
opt − c(P (σ)

ij) + c(P
(S,r)
ij).

But z
(σ)
opt − c(P (σ)

ij) + c(P
(S,r)
ij) < z

(S,r)
opt according to (2), which contradicts the fact that z

(S,r)
opt is the cost

corresponding to the shortest possible solution which includes P
(S,r)
ij .

If it is not possible to prune a tree node based on already explored similar nodes we can forgo solving
the bounding subproblem and reuse information from an already explored tree node. This can be done

when using the subproblem definition P2(σ) since the lower bound z
(σ)
LB in each tree node is separated

into two parts: the prefix, z
(σ)
prefix, which is the cost of the minimum-cost path through σ, and the suffix,

z
(σ)
suffix, which is a lower bound on P2(σ). Note that we have that the suffix part of the lower bound is

equal for all similar tree nodes:

z
(σ)
suffix = z

(S,r)
suffix, ∀N (σ) ∈ T (S, r).

If c(P
(σ)
ij) < c(P

(S,r)
ij) for some (i, j) ∈ V1×Vr then N (σ) cannot be pruned according to Proposition

5. However, if another node in T (S, r) has been processed and z
(S,r)
suffix has been stored, then z

(σ)
LB can be

obtained in O(1) time by computing

z
(σ)
LB = min

(i,j)∈V1×VL

(c(P
(σ)
ij)) + z

(S,r)
suffix.

3.6 Held-Karp Dynamic Programming

The dynamic programming approach to solving the PCGTSP is described in [8]. It is very memory
intensive and exponential in its time complexity. However, small instances (m < 20) can be solved
fairly quickly on a normal computer using dynamic programming and because of this it is included and
evaluated as a sort of ”presolve” step in our algorithm.

7

3.7 Summary of Algorithm

A pseudo-code outline of the algorithm, and the branching and bounding subroutines is given below.
Algorithm 3.1 outlines the general procedure for the solver. At line 6 the algorithm checks if the

instance is small enough to solve it directly with dynamic programming. The while-loop at line 13 makes
sure that the algorithm evaluates all nodes in the search tree that are not pruned. The if-statements
inside the loop checks if the node being evaluated is a complete solution and if it should be saved, or if
the node should be branched or pruned.

Algorithm 3.1 Branch-and-bound for the PCGTSP

1: function Solve(P)
2: LBbest = 0
3: UBbest =∞
4: bestLeaf = NULL
5: Let Q be an empty stack
6: if m < 20 then
7: DynamicProgramming(P)
8: else
9: Let N0 be the root node

10: Bound(N0) . Bound the root node
11: LBbest = N0.LB
12: Q.push(N0)
13: while Q is not empty do
14: currentNode = Q.pop()
15: if currentNode.IsLeaf & currentNode.UB < UBbest then
16: bestLeaf = currentNode
17: UBbest = currentNode.UB
18: else if currentNode.LB < UBbest then
19: Branch(Q, currentNode) . Branch node
20: else
21: delete currentNode . Prune node
22: end if
23: end while
24: end if
25: end function

The bounding subroutine outlined in Algorithm 3.2 simply takes a tree node and computes the bound
for the corresponding subproblem. Line 6 checks if some other tree node belonging to T (S(σ), p) has
been evaluated before the current node and picks out the lower bound for the subproblem directly from
a hash map. Otherwise the lower bound is computed using some fixed method. The bounding method
used depends on the Boolean parameters “useArborescence” and “useNoonBean”.

Algorithm 3.3 creates new tree nodes and adds them to the queue of nodes to be evaluated in
Algorithm 3.1. Line 7 enforces the branching priority where groups with a high number of successors
are evaluated first. Since the queue of nodes to be evaluated acts as a stack, the groups with the
smallest number of successors are pushed first. Line 11 checks if the resulting tree node is a complete
solution. Line 14 checks if the node can be pruned directly by utilizing Proposition 5. Line 17 creates
the appropriate subproblem P2(σ) according to Definition 2. Line 19 updates the shortest path costs

P
(S,r)
ij .

8

Algorithm 3.2 Bounding subroutine

1: function Bound(N)
2: Let historySuffix[] be a global hashmap . Suffix part of lower bound for every (S, r) pair
3: σ = N .GroupSequence
4: Let S(σ) be the set of groups in σ
5: Let p be the last group in σ
6: if historySuffix[(S(σ), p)] <∞ then
7: lowerBound = historySuffix[(S(σ), p)]
8: else
9: if useNoonBean then

10: if useArborescence then
11: lowerBound = ComputeMinArborescence(NB(N .SubProblem))
12: else
13: lowerBound = ComputeMinAssignment(NB(N .SubProblem))
14: end if
15: else
16: if useArborescence then
17: lowerBound = ComputeMinArborescence(NC1(N .SubProblem))
18: else
19: lowerBound = ComputeMinAssignment(NCL(N .SubProblem))
20: end if
21: end if
22: historySuffix[(S(σ), p)] = lowerBound
23: end if
24: N .LB = min(P

(σ)
ij) + lowerBound

25: end function

Algorithm 3.3 Branching subroutine

1: function Branch(Q, N)
2: Let historyPathCosts[] be a global hashmap . Path costs for every (S, r) pair
3: Let N be an empty stack
4: currentGroupSequence = N .GroupSequence
5: allowedGroups = N .AllowedGroups . Contains all groups which are allowed to be sequenced after the

last group in currentGroupSequence
6: while allowedGroups is not empty do
7: p = FindSmallestSuccessorSet(allowedGroups)
8: σ = [currentGroupSequence, p]
9: Let N (σ) be a new tree node

10: Let S(σ) be the set of groups in σ
11: if |S(σ)| = m then
12: N (σ).IsLeaf = true
13: N (σ).UB = ComputeUpperBound(σ) . Applies three-opt heuristic to σ and computes the

cost of the resulting tour
14: else if historyPathCosts[(S(σ), p)]ij < c(P

(σ)
ij) ,∀(i, j) ∈ V1 × Vp then

15: delete N (σ) . Prune node
16: else
17: N (σ).SubProblem = P2(σ)
18: Bound(N (σ))
19: for every (i, j) ∈ V1 × Vp do

20: if historyPathCosts[(S(σ), p)]ij > c(P
(σ)
ij) then

21: historyPathCosts[(S(σ), p)]ij = c(P
(σ)
ij)

22: end if
23: end for
24: Q.push(N (σ))
25: end if
26: delete p in allowedGroups
27: end while
28: end function

9

4 Results

We evaluate the algorithm and the different bounding methods on both synthetic and industrial problem
instances. The synthetic instances are generated by taking SOP instances and randomly adding between
0 and 8 duplicates of each vertex except the starting vertex, and duplicating all of the corresponding arcs
and precedence constraints. Each set of duplicate vertices and their original vertex are assigned a group
number (where every vertex in the group have identical arc costs). Every arc cost is then multiplied by
a random number drawn from the uniform distribution on the interval [0.8, 1.0], giving each vertex its
own set of arc costs. The synthetic instances are named “020.X”, where “X” is the name of the SOP
instance from which it has been derived, while the industrial problem instances - which are derived from
the problem of coordinate measuring machine sequencing [30] - are named “cmm00x”. All tests are run
on a PC equipped with an Intel i7-6700K 4.00GHz CPU and 32GB of RAM, and are terminated after
24 hours. We also limit the maximum memory usage by the algorithm to 8GB since the hash maps
which store subproblem bounds and shortest paths can grow uncontrollably if the algorithm is not able
to sufficiently limit the search tree.

We first test the different bounding methods on a limited set of problem instances in order to choose
the best one. The dynamic programming presolve step is disabled in order to evaluate the bounding
methods on the smaller problem instances as well. The results can be seen in Table 4. We evaluate the
different methods by comparing the upper and lower bound obtained when the algorithm terminates -
either due to solving the problem or exceeding the time limit. We also assess the bounding methods’
abilities to limit the search tree by comparing the number of tree nodes processed. The optimality gap
is calculated by taking (UB − LB)/UB. Given a PCGTSP instance P, the different bounding methods
are named as follows:

• AP-Lx - Assignment Problem solved over the instance NCx(P).

• AP-NB - Assignment Problem solved over the instance NB(P).

• MSAP-L1 - Minimum Spanning Arborescence Problem solved over the instance NC1(P).

• MSAP-NB - Minimum Spanning Arborescence Problem solved over the instance NB(P).

10

Table 1: Comparison of bounding methods. Dynamic programming presolve step is disabled.

Instance Measure AP-L1 AP-L2 AP-L3 AP-NB MSAP-L1 MSAP-NB

cmm001 UB 49.12 49.12 49.12 49.12 49.12 49.12
(m = 12) LB 49.12 49.12 49.12 49.12 49.12 49.12
(n = 14) Gap 0.000 0.000 0.000 0.000 0.000 0.000

of nodes 194 129 91 2412 869 1078
Time (s) 0.01 0.02 0.02 0.03 0.02 0.03

cmm002 UB 20.26 20.26 20.26 20.26 20.26 20.26
(m = 15) LB 20.26 20.26 20.26 20.26 20.26 20.26
(n = 24) Gap 0.000 0.000 0.000 0.000 0.000 0.000

of nodes 24633 25547 24274 63070 38555 38878
Time (s) 0.16 0.18 0.28 0.29 0.23 0.27

cmm003 UB 20.04 20.04 20.04 20.04 20.04 20.04
(m = 17) LB 20.04 20.04 20.04 20.04 20.04 20.04
(n = 35) Gap 0.000 0.000 0.000 0.000 0.000 0.000

of nodes 5693 6285 6080 8400 7415 7707
Time (s) 0.07 0.08 0.20 0.12 0.10 0.12

020.ESC12 UB 1389.77 1389.77 1389.77 1389.77 1389.77 1389.77
(m = 13) LB 1389.77 1389.77 1389.77 1389.77 1389.77 1389.77
(n = 64) Gap 0.000 0.000 0.000 0.000 0.000 0.000

of nodes 6351 10332 36518 116087 8093 8093
Time (s) 0.24 0.47 4.79 1.60 0.29 0.91

020.ESC25 UB 1383.12 1383.12 1383.12 1383.12 1383.12 1383.12
(m = 26) LB 1383.12 1383.12 1383.12 0.00 1383.12 1383.12
(n = 134) Gap 0.000 0.000 0.000 1.000 0.000 0.000

of nodes 47150 570135 5326456 2237494611 1504659 1504659
Time (s) 13.28 233.97 30825.32 86400.00 127.54 861.81

020.p43.4 UB 66848.40 66848.40 66848.40 66848.40 66848.40 66848.40
(m = 43) LB 66848.40 66848.40 66848.40 66848.40 66848.40 66848.40
(n = 205) Gap 0.000 0.000 0.000 0.000 0.000 0.000

of nodes 150442479 153568124 173404410 173240786 172191626 172191622
Time (s) 3416.38 3633.95 31847.6 13580.93 3503.74 4141.19

020.ft53.4 UB 11823.20 11823.20 12530.62 12048.03 11823.20 11823.20
(m = 53) LB 11823.20 11823.20 6048.93 7.36 11823.20 11823.20
(n = 276) Gap 0.000 0.000 0.517 0.999 0.000 0.000

of nodes 242706376 244617487 20956149 282228333 348785599 348785617
Time (s) 10152.13 12785.81 86400.00 86400.00 11360.23 18201.22

Averages Gap 0.000 0.000 0.074 0.286 0.000 0.000
of nodes 56176125 56971148 28536283* 384736242 74643159 74648236
Time (s) 1940.32 2379.21 21296.89 26626.14 2141.74 3315.08

* Method has the lowest average of processed tree nodes but could not solve 020.ft53.4

All bounding methods are able to solve all problem instances within the 24 hour time limit except
for AP-L3 and AP-NB. The AP-NB method is by far the slowest and weakest in terms of being able to
prune tree nodes. The two MSAP methods do not differ much in terms of strength but the MSAP-L1
method is much faster since it solves the MSAP on a significantly smaller graph. AP-L1 is on average
the strongest and fastest method for every problem instance in Table 4. Increasing the value of L does
not seem to consistently strengthen the bound on the data that has been tested, and when L = 3 the
bound computations are too slow to solve 020.ft53.4 within 24 hours. However, it should be noted that
the SOP instances ESCxx are particularly ill-conditioned for L > 1 as the starting vertex is a sort of
dummy-vertex which has zero incoming and outgoing arc costs to and from all other vertices and is
therefore used as a cheap via-vertex for many L-paths.

We proceed by choosing AP-L1 as the bounding method and test the algorithm on instances which
are larger and/or less dense with precedence constraints. The results are presented in Table 4. To get a

11

better measure of how close the upper bound is to optimality we also compute the gap (denoted GapB)
when it is compared with the best known lower bound for the problem instance.

Table 2: Results when using AP bound with NC1(P). Dynamic programming presolve step is enabled.

Instance m n |Π| AP-L1 Best known
UB LB Gap GapB Time (s) UB LB

cmm001 12 14 36 49.12 49.12 0.000 0.000 0.01 49.12 49.12
cmm002 15 24 59 20.26 20.26 0.000 0.000 0.03 20.26 20.26
cmm003 17 35 81 20.04 20.04 0.000 0.000 0.06 20.04 20.04
cmm004 90 215 753 49.71 17.29 0.652 0.537 86400.00 46.07 23.00
cmm005 173 404 1210 219.99 73.95 0.664 0.664 86400.00 185.83 73.95
020.br17.10 18 89 31 44.28 44.28 0.000 0.000 9.82 44.28 44.28
020.br17.12 18 93 38 44.09 44.09 0.000 0.000 4.58 44.09 44.09
020.ESC12 13 64 23 1389.77 1389.77 0.000 0.000 0.16 1389.77 1389.77
020.ESC25 26 134 36 1383.12 1383.12 0.000 0.000 13.28 1383.12 1383.12

020.ESC47 48 245 79 1062.62 746.37 0.298 0.030 86400.00 1062.62 1030.40‡

020.ESC63 64 350 296 50.35 44.05 0.125 0.015 86400.00 50.35 49.60‡

020.ESC78 79 414 361 15463.80 7535.11 0.513 0.254 86400.00 14425.00† 11540.00‡

020.ft53.1 53 282 64 6197.41 4829.41 0.221 0.028 86400.00 6197.41 6024.80‡

020.ft53.2 53 275 82 6717.82 4854.96 0.277 0.044 86400.00 6717.82 6420.80‡

020.ft53.3 53 282 269 8718.28 4926.57 0.435 0.058 86400.00 8718.28 8209.60‡

020.ft53.4 53 276 811 11823.20 11823.20 0.000 0.000 10152.13 11823.20 11823.20

020.ft70.1 70 346 86 33955.72 30830.73 0.092 0.074 86400.00 33955.72 31450.40‡

020.ft70.2 70 351 117 35763.70 30992.80 0.133 0.103 86400.00 35763.70 32080.80‡

020.ft70.3 70 347 284 39081.12 31522.64 0.193 0.129 86400.00 39081.12 34028.00‡

020.ft70.4 70 353 1394 46722.84 34849.70 0.254 0.083 86400.00 46722.84 42824.00‡

020.p43.1 43 204 53 22649.90 602.29 0.973 0.006 86400.00 22649.90 22512.00‡

020.p43.2 43 199 76 22854.10 608.82 0.973 0.003 86400.00 22854.10 22784.00‡

020.p43.3 43 212 138 44926.40 607.45 0.986 0.487 86400.00 28835.00† 23068.00‡

020.p43.4 43 205 538 66848.40 66848.40 0.000 0.000 3416.38 66848.40 66848.40

020.ry48p.1 48 256 59 13151.45 10240.78 0.221 0.039 86400.00 13151.45 12644.00‡

020.ry48p.2 48 250 73 13804.57 10198.70 0.261 0.068 86400.00 13804.57 12859.20‡

020.ry48p.3 48 254 179 16949.32 10415.22 0.386 0.080 86400.00 16949.32 15592.00‡

020.ry48p.4 48 249 643 25980.00 25980.00 0.000 0.000 3555.31 25980.00 25980.00

† Upper bound obtained by taking best known SOP instance upper bound
‡ Lower bound obtained by multiplying SOP instance lower bound by max perturbation

Only three instances (020.br17.10, 020.br17.12, and 020.ry48p.4) other than the ones in Table 4 are
solved within the time limit. For as many as 12/18 unsolved instances the algorithm produces upper
bounds which are verified to be within at least 10% of the optimal solution. However, the lower bound
produced at the root of the search tree is mostly too weak to prove this. Even though the algorithm
is able to solve the densest version of the 020.ft53.x, 020.p43.x, and 020.ry48p.x instances, the amount
of precedence constraints does not seem to be a deciding factor in terms of the quality of the produced
solutions in the unsolved instances. This is a known result for the SOP where algorithms in general
struggle the most with instances with precedence graphs which are half-way dense [26]. The dynamic
programming presolve seems to be consistently faster for the instances with m < 20.

5 Discussion and Future Work

The results show the efficiency of different bounding methods and transformations for the PCGTSP. The
experiments indicate that the Noon-Bean transformation is less effective than the node choice relaxation
and the AP bound is marginally stronger than the MSAP bound.

While it seems like the assignment problem bound is not consistently strengthened when L > 1, it
might be possible to utilize this idea better by modifying the branching rules. If one identifies a vertex
which is especially cheap to visit, one can branch on this vertex such that one subproblem includes the
vertex and the other excludes it. This can strengthen the bound in branches where cheap vertices are
excluded while still exploring solutions where they are included. Furthermore, preliminary tests indicate
that L = 1 is not consistently stronger than L = 2 for all subproblems in the search tree. Therefore,
a hybrid method where one computes the bound for both L = 1 and L = 2 and then chooses the best

12

one may be a good approach. The current implementation of computing the distances for L = 3 has
a computation time of O(n2 + m2n2) and is too slow to be practical. Developing this implementation
coupled with a method to counteract the bad via-vertex phenomenon may enable a stronger AP bound.

Since the lower bound is never updated during the branch-and-bound algorithm unless the prob-
lem instance is solved to optimality, the bound at the root is especially important to strengthen in
order to verify the quality of the produced solution. To strengthen the lower bound one could employ
Lagrangian relaxation of the node choice constraints, and the vertex choice constraints or subtour elimi-
nation constraints depending on which method that is chosen. Some sort of nested subgradient method
which updates the multipliers for the dualized constraints could then strengthen the lower bounds, and
particular focus could be given to the root problem.

One could also explore the idea of branching on vertices and compare that to the branching method
presented here. Even though branching on vertices may potentially increase the size of the search tree
(due to the fact that n ≥ m), fixed vertex choice may strengthen the subproblem bounds, and enable a
more extended generalization of the history utilization pruning method.

One of the bigger drawbacks of the algorithm presented here is that the precedence constraints are
almost completely relaxed and not taken into account when bounding the subproblems. One could
consider formulating an ILP model and solving an LP relaxed problem which takes the precedence
constraints into account somewhat. Tests in [30] indicate that general ILP solvers such as CPLEX
take far too long to solve the LP relaxation and produces bounds which are not significantly stronger,
indicating that some cutting plane augmentation is needed. However, this may be an issue with the mixed
ILP model which was formulated and utilized for these tests. Another approach may be to develop valid
precedence constraint cuts for the AP and/or MSAP in the same vein as in [13].

References

[1] D. Anghinolfi, R. Montemanni, M. Paolucci, L.M. Gambardella, A hybrid particle swarm optimiza-
tion approach for the sequential ordering problem, Computers & Operations Research 38 (2011), pp.
1076–1085.

[2] N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufacturing sys-
tems, PhD Thesis, Tech. Univ. Berlin, 1995.

[3] N. Ascheuer, M. Jünger, G. Reinelt, Heuristic algorithms for the asymmetric traveling salesman
problem with precedence constraints — a computational comparison, Technical Report, ZIB, Berlin
(1998).

[4] N. Ascheuer, M. Jünger, G. Reinelt, A Branch & Cut Algorithm for the Asymmetric Traveling
Salesman Problem with Precedence Constraints, Computational Optimization and Applications 17
(2000), pp. 61-84.

[5] E. Balas, New classes of efficiently solvable generalized Traveling Salesman Problem, Annals of
Operations Research 86 (1999), pp 529-558.

[6] E. Balas, M. Fischetti, W.R. Pulleyblank, The precedence-constrained asymmetric traveling salesman
problem, Mathematical Programming 68 (1995), pp. 241-265.

[7] K. Castelino, R. D’Souza, P.K. Wright, Toolpath optimization for minimizing airtime during ma-
chining, Journal of Manufacturing Systems 22(3) (2003), pp. 173-180.

[8] A. Chentsov, M, Khachay, D. Khachay, Linear time algorithm for Precedence Constrained Asym-
metric Generalized Traveling Salesman Problem, IFAC-PapersOnLine 49(12) (2016), pp. 651-655.

[9] A.A. Ciré and WJ. van Hoeve, Multivalued Decision Diagrams for Sequencing Problems, Operations
Research 61(6) (2013), pp. 1411-1428.

[10] R. Dewil, P. Vansteenwegen, D. Cattrysse, Construction heuristics for generating tool paths for laser
cutters, International Journal of Production Research 52(20) (2014), pp. 5965-5984.

[11] R. Dewil, P. Vansteenwegen, D. Cattrysse, M. Laguna, T. Vossen, An improvement heuristic frame-
work for the laser cutting tool path problem, International Journal of Production Research 53(6)
(2015), pp. 1761-1776.

13

[12] V. Dimitrijević, An efficient transformation of the generalized traveling salesman problem into the
traveling salesman problem on digraphs, Information Sciences 102(1-4) (1997), pp. 105-110.

[13] L.F. Escudero, M. Guignard, K. Malik, A Lagrangian relax-and-cut approach for the sequential
ordering problem with precedence relationships, Annals of Operations Research 50 (1994), pp. 219-
237.

[14] M. Fischetti, J.J. Salazar Gonsalez, P. Toth, The symmetric generalized traveling salesman polytope,
NETWORKS 26(2) (1995), pp. 113–123.

[15] M. Fischetti, J.J. Salazar Gonsalez, P. Toth, A Branch-And-Cut Algorithm for the Symmetric Gen-
eralized Traveling Salesman Problem, Operations Research 45(3) (1997), pp. 378–394.

[16] L.M Gambardella and M. Dorigo, An Ant Colony System Hybridized with a New Local Search for
the Sequential Ordering Problem, INFORMS Journal on Computing 12(3) (2000), pp 237-255.

[17] L. Gouveia and M. Ruthmair, Load-dependent and precedence-based models for pickup and delivery
problems, Computers & Operations Research 63 (2015), pp. 56-71.

[18] G. Gutin, D. Karapetyan, N. Krasnogor, A memetic algorithm for the generalized traveling salesman
problem, Natural Computing 9 (2010), pp. 47–60.

[19] G. Gutin and A. Yeo, Assignment problem based algorithms are impractical for the generalized TSP,
Australasian Journal of Combinatorics 27(1) (2003), pp. 149-153.

[20] M. Held and R.M. Karp, A Dynamic Programming Approach to Sequencing Problems, Journal of
the Society for Industrial and Applied Mathematics 10:1 (1962), pp 196-210.

[21] K. Helsgaun, Solving the equality generalized traveling salesman problem using the
Lin–Kernighan–Helsgaun Algorithm, Mathematical Programming Computation 7(3) (2015),
pp. 269-287.

[22] I.T. Hernádvölgyi, Solving the Sequential Ordering Problem with Automatically Generated Lower
Bounds, Operations Research Proceedings 2003, pp 355-362.

[23] D. Karapetyan and G. Gutin, Lin–Kernighan heuristic adaptations for the generalized traveling
salesman problem, European Journal of Operational Research 208(3) (2011), pp. 221–232.

[24] G. Laporte, H. Mercure, Y. Nobert, Generalized Travelling Salesman Problem Through n Sets Of
Nodes: The Asymmetrical Case, Discrete Applied Mathematics 18 (1987), pp. 185-197.

[25] YN. Lien, Transformation of the generalized traveling-salesman problem into the standard traveling-
salesman problem, Information Sciences 74(1-2) (1993), pp. 177-189.

[26] R. Montemanni, M. Mojana, G.A. Di Caro, L.M. Gambardella, A decomposition-based exact ap-
proach for the sequential ordering problem, Journal of Applied Operational Research 5(1) (2013),
pp 2-13.

[27] YS. Myung, CH. Lee, DW. Tcha, On the generalized minimum spanning tree problem, Networks
26(4) (1995), pp. 231-241.

[28] C.E. Noon and J.C. Bean, A Lagrangian Based Approach for the Asymmetric Generalized Traveling
Salesman Problem, Operations Research 39(4) (1991), pp. 623-632.

[29] C.E. Noon and J.C. Bean, An Efficient Transformation Of The Generalized Traveling Salesman
Problem, INFOR: Information Systems and Operational Research 31(1) (1993), pp. 39-44.

[30] R. Salman, J.S. Carlson, F. Ekstedt, D. Spensieri, J. Torstensson, R. Söderberg, An industrially
validated CMM inspection process with sequence constraints, Procedia CIRP Volume 44 (2016), pp.
138-143.

[31] S.C. Sarin, H.D. Sherali, A. Bhootra, New tighter polynomial length formulations for the asymmetric
traveling salesman problem with and without precedence constraints, Operations Research Letters
3(1) (2005), pp. 62-70.

14

[32] G. Shobaki and J. Jamal, An exact algorithm for the sequential ordering problem and its application
to switching energy minimization in compilers, Computational Optimization and Applications 61(2)
(2015), pp 343-372.

[33] L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the generalized traveling salesman
problem, European Journal of Operational Research 174 (2006), pp. 38–53.

[34] S.L. Smith and F. Imeson, GLNS: An effective large neighborhood search heuristic for the Generalized
Traveling Salesman Problem, Computers & Operations Research 87 (2017), pp. 1-19.

[35] J. Sung and B. Jeong, An Adaptive Evolutionary Algorithm for the Traveling Salesman Problem
with Precedence Constraints, The Scientific World Journal Volume 2014 (2014).

[36] D.P. Williamson, Analysis of the Held-Karp lower bound for the asymmetric TSP, Operations Re-
search Letters 12(2) (1992), pp 83-88.

15

Paper III

A Hybridized Ant Colony System Approach to the Precedence

Constrained Generalized Multiple Traveling Salesman Problem

Fredrik Ekstedt1*

fredrik.ekstedt@fcc.chalmers.se

Raad Salman1

salman@fcc.chalmers.se

Domenico Spensieri1

domenico.spensieri@fcc.chalmers.se

*Corresponding author.
1Fraunhofer-Chalmers Centre, Chalmers Science Park, 412 88 Gothenburg, Sweden

October 20, 2017

Abstract

Given an edge-weighted graph where the set of vertices has been partitioned into a number of
pairwise disjoint and non-empty sets (groups), the Precedence Constrained Generalized Multiple
Traveling Salesman Problem (PCGmTSP), as considered in this paper, requires a predetermined
number of cycles (or tours) such that exactly one vertex in each group is visited exactly once, and
the length of the longest tour is minimized. Additionally, the tours must be such that the order
in which the groups are visited must respect some given precedence relations. These relations may
cause a group which is required to succeed another group which is visited in another tour to be
delayed. This paper presents an Ant Colony Optimization approach to solving the PCGmTSP.
A local search procedure based on known heuristics for the Sequential Ordering Problem, Vehicle
Routing Problem, and the machine scheduling problem is incorporated. A novel way of interpreting
improvement in the local search heuristics is introduced and estimations of the delays are employed
within the heuristics. The results show that the local search procedure is quite good at improving
the solutions but that the computation time of the algorithm increases drastically for problems with
many precedence constraints.

Keywords: generalized multiple traveling salesman problem; precedence constraints; sequential
ordering problem; vehicle routing problem; machine scheduling; ant colony optimization

1 Introduction

The Precedence Constrained Generalized Multiple Traveling Salesman Problem (PCGmTSP) combines
several extensions of the classical Traveling Salesman Problem (TSP). The extension to a Generalized
TSP (GTSP) means that the vertices are partitioned into disjoint subsets (groups) and that only one
vertex in each subset needs to be visited. The Precedence Constrained (PC) extension introduces con-
straints on the form that a certain vertex (or group in the generalized case) must be visited before
another vertex (or group) in the sequence. Finally, the multiple agent extension means that there are
several salesmen (hereby known as agents) which share the task of visiting all vertices (or groups) ex-
actly once and returning to their respective start vertex. There are two ways of interpreting precedence
constraints in a multiple agent setting. The simplest is to only consider precedence constraints between
groups that are assigned to the same agent, intra agent constraints. This works in the same way as in
the single agent case. An extension to include constraints between groups assigned to different agents -
inter agent constraints - requires a notion of time to be involved in the model. We will use the extended
interpretation and assume that the edge and vertex costs represent times for traversing edges and visiting
vertices. The precedence constraints may then be expressed using the corresponding accumulated times
in the individual agents’ tours.

Applications of the PCGmTSP include robot stations where several robots work in parallel to com-
plete a number of tasks, e.g. welding or measuring. Typically, the cycle time - the time for all robots
to complete their tasks - is to be minimized. Since the robots are located at different positions, their

1

processing times for tasks and movements between tasks may differ between robots. Further, many tasks
may be performed in several ways, hence the generalized version. Finally, in some applications there are
various sequence constraints that put limitations on the order in which tasks are performed. Precedence
constraints require that a certain task must be postponed until another task is completed. The reason
for this may differ; for welding, it could be that some stabilizing weldings have to be done before others
may be considered, and for measuring machines there is often a need to measure some points of the
geometry first in order to establish global and/or local coordinate systems.

1.1 Previous work

The PCGmTSP combines elements from many different extensions of the classical TSP. Each of them -
generalization, multiple agents, precedence constraints - has been studied extensively. But to the best
of the authors’ knowledge, no one has yet combined them all as presented in this paper.

The extension to several agents (salesmen, vehicles or machines) has been considered in the scientific
literature from several viewpoints. The Vehicle Routing Problem (VRP) [1] is a classical problem - or
class of problems rather - modeling a fixed or variable number of vehicles which share the task of visiting
a number of customers and returning to a predetermined depot. Usually the sum of the traveling costs
is minimized, subject to capacity constraints (CVRP). But there are also versions with the so called
minmax objective where the cost of the longest tour is minimized instead [3]. The VRP may be defined
for a single depot, from where the whole vehicle fleet emanates and returns to, or for a variable or fixed
number of depots which coincides with our formulation. For the TSP, the multiple salesmen extension
is denoted mTSP and is basically a VRP without capacity constraints. Here too, minimizing the sum
of traveling costs is normally considered, but minmax versions have been studied as well [4–8]. Another
viewpoint comes from the scheduling literature with parallel machine scheduling with sequence dependent
setup times [11,12].

The addition of precedence constraints to the TSP leads to the PCTSP or the equivalent Sequential
Ordering Problem (SOP) [13], both of which have been extensively studied. Exact algorithms have
been considered in [14–16] where problem instances with as many as 700 vertices have been solved to
optimality. Heuristic approaches have been considered in [17–19] with the path preserving 3-exchange
proposed in [17] being particularly successful.

The generalization extension of the TSP [20] has also been widely studied over the years. Exact
branch-and-bound based algorithms have been studied as far back as 1983 in [21] and then continued
in [22–24]. Fischetti et al. consider a branch-and-cut algorithm for the symmetric case in [25]. Different
metaheuristic and neighbourhood search approaches have been developed in [26–30].

When it comes to combinations of the above TSP extensions, the literature is a bit more sparse. The
generalized VRP (GVRP) is fairly well studied, including the multi-depot version in [37, 38]. For the
GmTSP, some work has been done in [39] and [40], where the latter deals with the minmax version. The
PCGTSP has been considered in [34–36]. In [41], a scheduling problem with sequence dependent set-up
times, precedence constraints, and unrelated parallel machines are considered. Eligibility constraints
are also imposed on the machines - all tasks cannot be performed by all machines - but there is no
Generalized structure. Basically the same problem, but without the eligibility constraints, PCmTSP, is
considered in [42] where different MILP formulations are presented and compared.

The work closest to ours is found in [43] in the context of container transportation. It is basically a
PCGmTSP with two agents, a minmax objective and some additional spatial constraints. The assign-
ment of groups (requests) to agents (cranes) is predefined however, so the load balancing aspect is not
considered. Solutions to the problem were obtained through an adaptive large neighbourhood search
based on several removal and insertion heuristics.

1.2 Contribution and outline

The main contribution of this paper is to address the PCGmTSP in its most general form. Some known
heuristics - Path Preserving 3-opt, String Move and Delay Removal - are adapted to the problem. These
adaptations are aimed at node selection (generalization) and predicting delays due the combination of
precedence constraints and multiple agents. Simultaneously, a new way of looking at improvements in
local search is introduced, which may be useful particularily for minmax problems. Further, an ant
colony algorithm is developed and combined with the adapted local heuristics. Finally, a class of testbed
problem is constructed by expanding existing SOP test problems.

2

In Chapter 2, a formal definition of the PCGmTSP is given, with extra focus on precedence constraints
in general and between agents in particular. The latter aspect is further considered in Chapter 3 where
the disjunctive graph is introduced as a necessary tool to compute the minmax objective function. In
Chapter 4 the Hybrid Ant Colony System is introduced. In Chapter 5, a slightly modified Local Search
is presented with some novel features. In Chapter 6, the new test problems are described, and the results
from extensive computational experiments are presented.

2 Problem description

We consider a directed graph (V,E), where V = 1, . . . , N denotes the set of vertices, and E ⊆ V × V
denotes the set of directed edges. The vertices are divided into disjoint non-empty subsets V1, . . . , VM
referred to as groups. For convenience, we may refer to a group by its integer index instead of the full
set notation. Furthermore, we denote the index of a group which includes the vertex v as G(v) so that
v ∈ VG(v) always holds. Each vertex v is also associated with a unique agent A(v) ∈ {1, ...,K} which is
able to process it. We may have for some problem instances that all agents are able to process any of the
tasks, i.e. visit any group, and for others that each agent can only visit a subset of the groups but there
exists a feasible solution where every group is visited exactly once. Either way, we assume, without loss
of generality, that the agents may share access to the same group but never to the same vertex. Finally,
for each agent a there is a designated starting group G0(a) which only contains vertices associated with
a, that is, G(v) = G0(a) =⇒ A(v) = a.

For each edge (i, j) ∈ E there is a corresponding edge processing time T edge
i,j , and for each vertex

v ∈ V a processing time T vertex
v . Due to the precedence constraints, we may not simply add the vertex

times to all incoming (or outgoing) edge cost in the ordinary xTSP fashion. We need to separate the
start and end time of each vertex in a solution. Yet, it is sometimes convenient to use the following
notation

T̃i,j = T edge
i,j + T vertex

j .

Just as for the single agent PCGTSP [36], precedence constraints are expressed on a group level, and
may thus be seen as a separate acyclic directed graph ({1, ...,M},Π), where (g1, g2) ∈ Π means that g1
must precede g2. With multiple agents however, the interpretation of (g1, g2) ∈ Π becomes somewhat
more complicated and requires some further definitions. We begin by defining what constitutes a solution
for the mGTSP without precedence constraints.

Definition 1. By a solution s to an mGTSP instance we mean K vertex sequences sa = {val }l=0,...,L(a)−1,
a = 1, . . . ,K, called agent tours, such that

• G(s0a) = G0(a),

• A(vla) = a,

• for each group g there is exactly one agent a = A(s, g) and one tour index l such that G(vla) = g.

Note that slightly ambiguous use of the function A, but it will be clear from the context which version
is meant and this will not cause any confusion.

Definition 2. For a solution s, an agent a, and a group g we define agent tasks start and end times,
group agent start and end times, agent tour time, and cycle time as

Tend(s, a, l) =
l−1∑

i=0

T̃sia,s
i+1
a
, l = 1, . . . , L(a)− 1

Tsta(s, a, l) = Tend(s, a, l)− T vertex
sla

, l = 1, . . . , L(a)− 1

Tsta(s, g) = Tsta(s, a, l) for a and l such that G(sla) = g

Tend(s, g) = Tend(s, a, l) for a and l such that G(sla) = g

Ttot(s, a) = Tend(s, a, L(a)) with the auxiliary definition sL(a)a := s0a

TC(s) = max
a
{Ttot(s, a)}

3

Even though other objective functions such as the sum of the agent tour times may be equally
interesting, we will focus entirely on the cycle time of the solution (also known as the makespan). That
is, the objective is to minimize the longest agent tour time.

Using the above definitions, we may state a preliminary definition of precedence constraint fulfillment.
The precedence constraint (g1, g2) ∈ Π is fulfilled in a solution s iff Tend(s, g1) ≤ Tsta(s, g2). For groups
within the same agent tour (intra agent constraints) this is a natural interpretation. However, for
constraints affecting groups in different agent tours (inter agent constraints), one quickly realizes that
this definition is unnecessarily restrictive. If Tend(s, g1) > Tsta(s, g2) were to happen for some inter
agent constraint (g1, g2) ∈ Π one could simply add a waiting time to the processing time of g2 such that
Tend(s, g1) = Tsta(s, g2). This constraint relaxation would thus add potential delays to the tours, but
could also open up for better solutions in problem instances which are dense with precedence constraints.
To avoid complicating the notation, we will assume from now on that the quantities in Definition 2 include
delays.

The PCGmTSP may then finally be completely defined as an mGTSP where the objective is to
minimize the cycle time TC of the solution, and with soft precedence constraints as defined above.

3 Disjunctive graph representation

The relaxation of inter agent constraints to “soft constraints” with incurred delays complicates the com-
putations of the individual agents’ tour times and the cycle time. To better facilitate these computations
we introduce a disjunctive graph representation of a PCGmTSP solution.

Definition 3. Given a PCGmTSP instance and a feasible solution s, the corresponding disjunctive graph
is a directed acyclic graph consisting of

• All vertices in s

• One vertex senda for each agent serving as an ”end vertex”

• All edges (sla, s
l+1
a) in s - except for edges (s

L(a)−1
a , sa0) - with edge costs T̃sla,s

l+1
a

• Edges (s
L(a)−1
a , senda) with edge costs T̃

s
L(a)−1
a ,s0a

• Edges of the form (v1, v2) where v1, v2 ∈ s, (G(v1), G(v2)) ∈ Π, and A(v1) 6= A(v2) - named
disjunctive edges - with zero processing times.

1 2 3

4 5 6 7

1

4

Figure 1: A disjunctive graph representation of a feasible PCGmTSP solution. Disjunctive edges are
dotted.

The disjunctive graph representation facilitates the computations of the quantities Tend(s, a, l) (and
thereby Ttot(s, a) and TC) by the following known result [10].

Proposition 1. The finishing time Tend(s, a, l) is given by the longest path in the disjunctive graph
ending at sla.

4

For a solution to be feasible, its disjunctive graph must be acyclic. This can be understood with the
same logic which dictates that the precedence graph must be acyclic. Any solution to the PCGmTSP
imposes a set of precedence constraints on the vertices involved which is what the conjunctive edges, all
intra agent edges, actually represent. If the graph is cyclic after the disjunctive edges are added then
the sequencing of the solution is incompatible with the precedence constraints which are imposed by the
problem instance. Figure 2 illustrates the cyclic disjunctive graph of an infeasible solution. This sequence
is impossible to perform since 1 must precede 2 which must precede 3 which must precede 6 which must
precede 7 which must precede 2 etc. A solution which is infeasible because of such a phenomenon will
be called cyclic.

1 2 3

4 5 6 7

1

4

Figure 2: A disjunctive graph representation of an infeasible PCGmTSP solution. Disjunctive edges are
dotted.

The computation of all finishing times Tend(s, a, l) will be referred to as the Disjunctive Graph Longest
Path algorithm or simply the DGLP. This includes checks for any cycles in the solution.

4 Hybridized Ant Colony System

The idea for the Hybridized Ant Colony System (HACS) algorithm is to model R generations of P ants,
that iteratively generate feasible solutions by traversing edges, (i, j) ∈ E, in a non-deterministic manner.
In each iteration during the solution generation, an ant is guided by the depositing of pheromones,
denoted τij ∈ [0, 1]. The higher the value of τij , the higher the probability that edge (i, j) is chosen to
be traversed by the ant during that iteration. Also guiding the solution generation are fixed visibility
parameters, ηij = 1/T̃ij , which provide a fixed measurement of how attractive the corresponding edge is.

The pheromone levels contribute to the exploitation of good solutions. However, to avoid getting
stuck at solutions which are locally optimal, the HACS algorithm incorporates a so-called evaporation
rate parameter ρ ∈ [0, 1] which controls the rate at which the pheromones along the edges evaporate.
After each generation, i.e. when the P ants have generated one solution each, the pheromone levels are
updated according to the global rule: τij = (1− ρ)τij + ρ/TC(s̄) for every (i, j) ∈ s̄, where s̄ is the best
solution found so far. Furthermore, during the solution generation process, if an ant chooses to traverse
an edge (i, j), the pheromone level of that edge is updated according to the local rule: τij = (1−ρ)τij+ρτ0
where τ0 is the initial pheromone level parameter. The HACS algorithm also introduces a probability
d0 ∈ [0, 1] that the edge chosen by an ant is the edge which is the most attractive, and chooses edges in
proportion to ηij and τij with probability (1− d0).

Let α, β ≥ 1 be parameters that control the relative importance of the pheromone level and the
visibility parameter, respectively, when choosing an edge. The attractiveness of an edge (i, j) ∈ E is
then computed as:

ψij = (τij)
α(ηij)

β . (1)

An outline for the HACS framework and the procedure for generating a solution is given below.

5

Algorithm 1 HACS framework

1. Set r := 1 and set TC(s̄) =∞.

2. Set p := 1

3. Generate a solution srp according to solution generation algorithm and apply local search heuristics.
If TC(srp) < TC(s̄) then set s̄ = srp.

4. If p < P then set p := p+ 1 and go to step 3.

5. Set r := r + 1. Take the best solution found so far, s̄, and update the pheromone levels as
τij = (1− ρ)τij + ρ/TC(s̄) for every (i, j) ∈ s̄.

6. If r < R then go to step 2. Otherwise return overall best solution that was found and stop.

Algorithm 2 Solution generation for the HACS algorithm

1. Initialize the solution s by setting the first vertex in each one of the agent tours to the predetermined
start vertices and set k := 2.

2. Compute the set of vertices allowed to be sequenced next in the solution, V (s), by taking into
account the precedence constraints and the groups already visited in s.

3. Let d ∈ [0, 1] be a uniformly distributed random number. If d > d0 choose to traverse the edge
(i, j) with probability

fij =





ψij∑
l∈V (s)

ψil
, if j ∈ V (s)

0, otherwise.

(2)

If d ≤ d0 then let the edge (i, j∗) be traversed where j∗ ∈ V (s) is such that ψij∗ ≥ ψij , i.e. the
edge which is the most attractive is chosen.

4. If edge (i, j) is traversed then set s
L(A(j))−1
A(j) := j and update the pheromone levels according to

τij := (1− ρ)τij + ρτ0.

5. If k < M set k := k + 1 and go to step 2.

When computing the set of vertices allowed to be sequenced next in a partial solution s, V (s), the
inter agent constraints have to be fulfilled “sequentially” in order to avoid cyclic solutions. Which is to
say, if (G(v1), G(v2)) ∈ Π then G(v1) must be visited in s before G(v2) is allowed to be sequenced. This
might seem as a severe rule to enforce, especially if all agents are able to access all groups. However, a
relaxed rule where a group q is allowed to be sequenced on an agent if there exists other agents which
can feasibly reach and sequence all groups p : (p, q) ∈ Π such that no cycles are created, quickly becomes
very complicated to verify. We will instead rely on the local search heuristics to improve the solutions
in this slightly more limited space of solutions.

5 Local search procedure

In this section we will present a local search procedure for improving a given solution. It is based on
three different heuristics:

• Path-preserving 3-opt (or simply 3-opt)

• String Move

• Delay Removal

6

The two first are adaptations of already well known local search heuristics for the SOP/PCTSP and/or
mTSP/VRP, and the third is inspired by a known job shop scheduling heuristic. The adaptations are
aimed at handling the two added complications; the group structure and the precedence constraints,
with an emphasis on the latter.

5.1 Algorithm structure

The main algorithm for improving a given solution is given below. It is a classic descent search, but with a
small twist. For reasons to be explained in Section 5.7, we will extend the notion of solution improvement
by introducing an improvement measure I. We let N(s) denote the set of solutions reachable by 3-opt,
String Move and Delay Removal from solution s.

Algorithm 3 Local search - modified version

1. Find an initial solution s0, set s∗ := s0 and k := 0

2. Search for a feasible sk+1 ∈ N(sk) such that I(sk, sk+1) > 0

3. If (2) fails or k + 1 = kmax, terminate.

4. If TC(sk+1) < TC(s∗) set s∗ := sk+1

5. Set k := k + 1 and return to (2).

With a proper choice of improvement measure I, this modified local search will terminate after a
finite number of steps. We have anyway imposed a maximum number of iterations, kmax , since this
algorithm will be run many times during HACS.

The neighbourhood search in step 2 is complicated by the fact that it is not always possible to
easily predict the effect of local changes due to the inter agent precedence constraints, something that
will be further explored below. Further, it is too expensive to invoke the DGLP for each solution in
the neigbourhood N(sk) of the current solution. The following strategy will therefore be used for each
heuristic and its corresponding neighbourhood separately.

Algorithm 4 Neigbourhood search

1. For each s ∈ N(sk), compute estimates of the agent tour times, and use these to estimate I(sk, s)

2. Sort all s ∈ N(sk) according to the estimated improvements from (1)

3. Apply the DGLP to the most promising candidates of the sorted list from step 2 until an improve-
ment has been found or a maximum number of candidates has been tried.

We would like to point out that the neigbourhoods N(sk) may contain infeasible cyclic solutions,
since these are impossible to detect on the fly without invoking the DGLP.

5.2 Handling groups and vertex selection

We will use the term vertex selection for the choice of which vertex to visit in each group given its
assigned agent. Given a group sequence for each agent, the optimal vertex selections may be computed
using dynamic programming as described in [25]. Applying a full vertex (re)-selection for every candidate
move in a local heuristic is computationally intractable, and therefore some restraint must be taken on
where to use a full vertex selection. We will restrict its use to a tandem operation with the even more
expensive DGLP. However, faster and cheaper local vertex assignment rules may be applied within the
heuristics.

5.3 Handling precedence constraints

Precedence constraints significantly complicate sequencing and balancing heuristics. For intra agent
constraints, efficient path preserving k-opt moves have been developed for sequencing heuristics, and

7

path preserving 3-opt which is used here has been particularly successful. Since balancing heuristics
such as String Move also are path preserving, these techniques may be generalized and intra agent
constraints may be efficiently treated here as well.

Inter agent constraints are much more complicated to handle, and especially the relaxed version.
Below, we will define some variables that may give some insight into the effect of a local move on inter
agent constraints. These variables are best understood in the context of preventing delays due to inter
agent constraints to occur at all. We will therefore make some temporary assumptions on solutions being
delay free. For a given solution s, define the margin for each precedence constraint (p, q) ∈ Π as

Mp,q = Tsta(s, q)− Tend(s, p)

Assume no inter agent constraint delays exist in the current solution s, that is, for all precedence
constraints it holds Mp,q ≥ 0. For a move s→ s′, we define the time shift for group g as

∆g := Tsta(s′, g)− Tsta(s, g)

For s′, any potential delays due to inter agent constraints are ignored, and Tsta(s′, g) may thus be
calculated just by summing up edge and node times. This definition extends in a natural way even if s
already contains delays, which will be clear below when considering the actual heuristics used. In order
to prevent introductions of delays due to inter agent constraints, it is clear that this is equivalent to that
∆p − ∆q ≤ Mp,q holds for all precedence constraints. For a certain heuristic move, there is a certain
maximum and minimum time shift for all groups involved, and by computing once a sorted list of all
precedence constraints for s by increasing margins, we only need to check the most critical constraints.

To extend the methodology just described for situations where new delays are introduced, we define
the delay for the inter agent (w.r.t. s′) constraint (p, q) ∈ Π with margin Mp,q as

dp,q := (∆p −∆q −Mp,q)+

When estimating the effect of any move, we initially estimate agent dependent tour time gains γa as the
difference between the removed edge times and added edge times, taking local node reassignments into
account but ignoring inter agent constraints. A simple way to incorporate delays is to estimate the new
agent tour times by

T̂tot(s
′, a) = Ttot(s, a)− γa + max

A(s,q)=a
dp,q

Of course, this estimate is very simplified and does not take into account chain effects induced by new
waiting times. It is only guaranteed to give correct results when no new delays are introduced, and may
not work very well in constraint dense problems. However, some preliminary tests showed that the ten
most promising moves almost always contained the actual best move for most test problems. In the most
dense problems though, the optimal move could end up outside the top 100 most promising moves.

8

Figure 3: Margin, shifts and delays for two 3-opt moves. The first two lines show parts of two agent
tours, the position of groups p and q in the tours, and in between the margin Mp,q. The third line
shows a 3-opt move for the second agent, the new position for group p and the corresponding time shift
∆p. The fourth line shows another 3-opt move for the second agent, the new position for group p, the
corresponding time shift ∆p and the induced delay dp,q.

5.4 Path Preserving 3-opt

Figure 4: A path preserving 3-opt, forward version.

We apply the Path Preserving 3-opt procedure of Gambardella et al. to each agent tour separately
without considering vertex reassignment. Figure 4 illustrates how a right and a left part are identified
and swapped in an agent tour. The sequences within the paths are preserved so the only intra agent
precedence constraints to consider are those (p, q) ∈ Π with p in the right and q in the left path.

The inter agent constraints may also be affected since the right path is moved to an earlier and the
left path to a later point of time. More exactly, given a suggested move (h, i, j) the time shifts for groups
in the right and the left segments are

∆ri = Tsta(s, a, h)− Tsta(s, a, i+ 1) + T̃sah,sai+1

∆le = Tsta(s, a, i+ 1)− Tsta(s, a, j)− T̃sah,sai+1
− T̃saj ,sah+1

+ T̃sah,sah+1

5.5 String Move

Several heuristics aimed at moving tasks (vertices or groups) between agents were introduced in [9] for
the VRP. In our setting, the goal is primarily to redistribute groups between agents in solutions where

9

the working load is unbalanced, that is, agent tour times differs significantly. Therfore, we refer to these
heuristics as load balancing heuristics. From the three heuristics we opted for String Relocation, or String
Move as it is often referred to.

Figure 5: A string move. Edges with an ”X” are removed, dashed edges are added.

A string move from agent afr to agent ato is depicted in Figure 5. It is realized by an outer loop on
gout followed by an inner loop over gsta. From there the segment σ = (gsta, . . . gend) may be built up
incrementally by the innermost loop up to some maximum segment length lmax. Vertex selection needs
to be considered for the groups in the segment σ since they are assigned to a new agent. This is done
incrementally in a greedy fashion. When gsta is chosen, the best vertex choice vsta with G(vsta) = gsta
and A(vsta) = ato is made by minimizing

λ1 = T̃vout,vsta + T̃vsta,vinc

For the k:th group gk to be added to σ, the vertex choice vk with G(vk) = gk and A(vk) = ato is made
to minimize

λk = λk−1 + T̃vk−1,vk + T̃vk,vinc − T̃vk−1,vinc

New potential intra agent constraints violations for agent ato may be introduced between groups in σ
and groups from gout and forward. These may be checked by the same lexicographic labeling procedure
as for path preserving 3-opt.

New inter agent constraint violations may be introduced between groups in σ and the remaining
groups left for agent afr. Further, due to time shifts, new and changed delays due to inter agent constraints
may result. Constraints (p, q) ∈ Π with A(p) = ato may cause new delays appear in two ways. Assume
T (σ, a) to be the total processing time of σ when sequenced on agent a. If p is a successor of gout in the
old tour, there is a time shift

∆p = T (σ, ato) + T̃ (vout, vsta) + T̃ (vend, vinc)− T̃ (vout, vinc).

For q in the sequence starting with gnxt the time shift is given as

∆q = T̃ (vprv, vnxt)− T (σ, afr)− T̃ (vprv, vsta)− T̃ (vend, vnxt)

For p or q in σ similar time shifts are easily calculated.

10

5.6 Delay Removal

While 3-opt and String Move attempted to avoid introducing delays due to inter agent constraints, they
may still occur. Further, it may be the case that the optimal solution contains delays. Still, delays are
automatically detected during DGLP, and it could be worthwhile to try to remove them. The following
is based on known techniques for reducing idle times in job shop scheduling problems [44].

Assume that we have a solution s with an inter-agent precedence constraint (g1, g2) ∈ Π that induces
a delay for g2

D(g2) := T sta(g2)− T sta(g′2)− T edge
v′2,v2

where G(v2) = g2, G(v′2) = g′2 and (v′2, v2) is an edge in s.
The idea is that the waiting time for agent a2 (A(v2) = a2) may be used for visiting groups later

in that agent sequence that are not subject to constraints with g1 or g2. A simple way to do this is to
move v2 forward in the sequence while keeping the relative order between the other vertices intact. This
is done incrementally one step at a time. In each step, time shifts, gain, and estimated new T sta(g2) are
easily updated by adding and subtracting edge times in a straightforward manner, and a new estimated
agent tour time for a2. The procedure is repeated for each inter agent constraint as long as there is still
a delay. A similar procedure is also employed for each inter agent constraint by moving g1 backwards in
its agent sequence.

A drawback with the suggested procedure is that one often destroys a very good (at least with delays
not taken into account) sequence. In most cases, we saw that this meant that the potential gain of
using the delay time to visit another group was eliminated by increased edge processing times. But it
happened sometimes that an actual improvement was found, so it might still be worthwhile to employ
this heuristic.

5.7 Measuring improvement

How to measure the improvement of a particular move in a local search neighbourhood may seem trivial at
a first glance; it is simply a decrease in cycle time. But it turns out that such an improvement measure can
lead to undesired deadlocks which may be illuminated by some simple hypothetical examples. Consider
a three agent problem instance where the optimal solution has individual agent tour times (10, 10, 10).
Now suppose that the currently best solution - start solution say - has agent tour times (5, 12, 12).
Further assume that no agent tour may be further improved by 3-opt. The cycle time is impossible to
decrease in a single string move since one of the agents will always still have 12 as its tour time.

A resolution to this deadlock would be to define the improvement of a string move as the decrease in
max(Ttot(s, afr), Ttot(s, ato)). This would allow an improving move to partly balance two of the agents
leading to tour times (8, 10, 12) for instance. From there, agent 1 and 3 may be balanced in another
improving string move to obtain an optimal solution.

In the same way, it may be reasonable to define the improvement of a 3-opt move to be the largest
individual tour time reduction. Consider a hypothetical scenario with two agents and tour times (12, 12).
Assume further that 3-opt may lower one tour time but not the other. It is reasonable to consider lowering
one of them to say 8 to be an improvement since this may enable a subsequent cycle time improvement
via string move.

But since all agent tour times may be affected by any heuristic due to delays, it is preferable to have
a general improvement measure that is applied equally to all heuristics. Let T(s) denote the vector of
agent tour times for solution s sorted in descending order. We then define an improvement measure by

I(sold, snew) = LK(T(sold),T(snew))

where the ”Lexicographic comparison function” Ln is recursively defined by

Ln(x, y) =

{
Ln−1(x2:n, y2:n) if x1 = y1 and n > 1
x1 − y1 otherwise.

It is easy to realize that this improvement measure will incorporate the ideas described above for
String Move and 3-Opt above and consider a move from agent tour times (5, 12, 12) to (8, 10, 12) an
improvement. It will never consider a cycle time increasing move an improvement though, regardless of
how small the cycle time increase is and how the other agent tour times are improved. It is possible
to relax the improvement function to allow small cycle time increases and still consider a move an
improvement, but this will not be explored further here.

11

6 Results

6.1 Test bed problems

Because of the lack established test problems, there was a need to define new proper test problems.
We opted to use the existing SOP instances in TSPLIB and to extend them to PCmGTSP instances
according to the following principles

• We create one dummy singleton start group for each agent with all edge times set to zero.

• For each SOP vertex we create a group with NA,G vertices, that is, NA,GK vertices in total.

• For a proper edge between two vertices belonging to the same agent a and different groups corre-
sponding to SOP vertices i and j, the corresponding edge time given as

⌈
cij

1 + σau

1 + σa/2

⌉

where u is a unit uniform random variable, σa are agent-dependent spread parameters, and cij is
the SOP edge cost.

• All vertex times are set to zero.

A two-agent version was run for each test problem. For problems with M ≥ 40, a three-agent version
is also run, and for M ≥ 60 a three-agent version as well. In all cases we used σa = a.

6.2 Algorithm parameters

The following parameter settings were used

• Number of ants: P = 10

• Number of ant generations: R = 100

• Initial pheromone level: τ0 = 0.5

• Other HACS parameters: d0 = 0.90, α = 1, and β = 2

• Maximum string length in String Move: lmax = 5

• Maximum number of local search iterations: kmax = 20

• Maximum number of candidates evaluated by DGLP in each neigbourhood: jmax = 20

For the two latter parameters, the pairs (50,50) and (100,100) were also tested except for the larger
problems where the total CPU time would be too high.

6.3 Experimental results

Below, in Tables 1, 2, and 3, we present numerical results from our experiments. The values presented
in the tables are the mean of the best solution values across the 10 trial runs (Mean), the standard
deviation (SD), and the mean running time for the algorithm (Time (s)).

Since this problem has not been considered before and there is a lack of tight lower bounds for the
problem instances, the quality of the solutions cannot be accurately assessed. However, some general
conclusions may be made from the results. The variation of the best solution value between trials are
typically a few percent, and the standard deviation generally seems to decrease as kmax and jmax are
increased. Increasing the values of kmax and jmax also seems to improve the solution with about 0-10 %
and in some cases even more than that. Increasing from (20,20) to (50,50) pays off the most, particularly
for dense scenarios.

The execution times are generally quite high and seem to approximately double with the values on
kmax and jmax. For the more dense problem instances, the increase seems to be even higher. This is
probably a case of the whole candidate solution list being fully analyzed more often since the estimations
of improvements are less indicative of the actual improvement in dense instances.

12

Table 1: Results for instances with 2 agents.

Instance
kmax = 20, jmax = 20 kmax = 50, jmax = 50 kmax = 100, jmax = 100

Mean SD Time (s) Mean SD Time (s) Mean SD Time (s)

2a.br17.10 14.0 0.0 5.4 14.0 0.0 10.7 14.0 0.0 17.5
2a.br17.12 14.0 0.0 5.2 14.0 0.0 10.8 14.0 0.0 14.3
2a.ESC07 407.0 0.0 1.3 407.0 0.0 1.5 407.0 0.0 1.5
2a.ESC12 444.0 0.0 4.3 444.0 0.0 7.6 444.0 0.0 10.3
2a.ESC25 553.2 12.9 12.1 538.1 15.6 21.1 525.0 16.3 32.8
2a.ESC47 621.5 40.2 45.2 539.0 29.6 92.3 545.3 20.4 131.7
2a.ESC63 31.4 0.5 94.3 30.9 0.3 159.2 31.0 0.0 241.3
2a.ESC78 5160.7 149.6 89.5 4736.7 66.3 276.7 4621.3 72.6 469.4
2a.ft53.1 2799.0 67.1 45.5 2519.0 71.7 119.7 2490.7 19.7 176.2
2a.ft53.2 3201.2 50.3 39.9 2885.6 77.3 117.6 2785.1 82.7 186.5
2a.ft53.3 4353.1 94.9 46.5 3813.3 67.0 161.3 3763.3 79.8 285.5
2a.ft53.4 5185.5 223.7 79.7 4688.2 155.2 250.5 4673.9 91.9 474.5
2a.ft70.1 14862.8 110.1 66.6 13902.2 99.3 151.6 13578.4 141.5 224.4
2a.ft70.2 15577.4 112.1 63.0 14597.7 130.3 148.1 14360.3 88.5 226.1
2a.ft70.3 17022.1 241.3 64.0 16083.0 156.1 180.5 15850.4 147.1 295.5
2a.ft70.4 19681.9 207.5 153.1 18602.2 157.8 515.7 18266.8 249.3 966.4
2a.kro124p.1 21326.9 475.2 201.2 18127.9 331.3 454.5 16101.8 326.6 950.1
2a.kro124p.2 23032.2 710.3 160.4 19441.6 322.2 399.3 17535.0 251.5 914.8
2a.kro124p.3 28417.4 686.9 128.6 24675.0 407.7 419.6 22511.4 507.0 1050.3
2a.kro124p.4 34763.2 1154.8 276.4 30194.0 488.3 1268.3 27305.1 395.5 3214.4
2a.p43.1 1023.2 8.4 24.4 1013.7 15.9 50.7 1012.2 13.6 88.2
2a.p43.2 1303.2 30.7 23.1 1307.9 22.4 59.7 1274.5 24.5 112.2
2a.p43.3 1546.9 36.6 24.7 1539.1 25.8 67.3 1561.8 23.8 133.2
2a.p43.4 2219.3 56.4 49.1 2087.4 153.7 143.1 1825.1 163.6 280.9
2a.prob42 112.9 4.8 30.3 108.4 4.0 50.3 107.7 3.3 73.7
2a.prob100 1212.2 47.2 101.3 845.8 20.8 384.0 786.4 36.4 605.5
2a.rbg048a 128.0 2.4 77.4 121.9 3.8 169.9 121.9 1.5 270.2
2a.rbg050c 166.6 2.2 85.0 160.0 1.7 204.1 159.6 1.7 330.3
2a.rbg109a 435.9 9.5 577.5 384.6 7.8 1644.4 373.8 3.5 2229.9
2a.rbg150a 719.5 7.6 1347.1 643.2 7.2 5153.2 - - -
2a.rbg174a 856.3 8.3 1566.2 771.5 8.1 4614.3 - - -
2a.rbg253a 1329.2 15.2 4378.9 1188.8 20.4 19456.0 - - -
2a.rbg323a 1597.0 19.6 5510.6 - - - - - -
2a.rbg341a 1558.7 12.1 8014.1 - - - - - -
2a.rbg358a 1597.4 21.9 7762.1 - - - - - -
2a.rbg378a 1670.3 31.0 7822.3 - - - - - -
2a.ry48p.1 6085.7 171.8 37.0 5276.9 182.5 110.0 5275.7 46.7 174.0
2a.ry48p.2 6551.5 179.7 34.6 5760.6 133.4 110.2 5673.4 137.6 178.1
2a.ry48p.3 7756.2 160.6 35.7 7036.9 138.2 107.0 6903.1 151.9 188.3
2a.ry48p.4 9892.1 248.9 71.3 9098.1 238.9 238.9 9036.8 104.1 428.4

13

Table 2: Results for instances with 3 agents.

Instance
kmax = 20, jmax = 20 kmax = 50, jmax = 50 kmax = 100, jmax = 100

Mean SD Time (s) Mean SD Time (s) Mean SD Time (s)

3a.ESC47 357.8 28.4 41.0 300.4 17.6 121.2 300.6 8.0 179.2
3a.ESC63 20.9 0.3 86.9 20.0 0.0 174.9 20.0 0.0 262.4
3a.ESC78 3000.3 111.4 112.2 2598.0 78.0 346.5 2468.5 86.9 719.0
3a.ft53.1 1663.1 37.8 41.7 1394.3 25.2 132.0 1344.1 16.7 251.8
3a.ft53.2 1860.8 37.1 45.6 1618.9 31.3 130.6 1531.9 29.4 262.3
3a.ft53.3 2654.9 81.0 53.5 2149.7 82.2 191.4 2008.5 46.9 391.9
3a.ft53.4 3216.9 183.2 96.1 2758.7 49.2 400.1 2610.2 45.3 748.0
3a.ft70.1 8337.3 145.1 61.5 7961.2 93.1 171.9 7789.4 54.1 388.9
3a.ft70.2 8723.3 163.6 62.3 8344.1 80.7 172.9 8091.0 71.8 405.7
3a.ft70.3 9795.8 197.8 73.3 9159.0 130.2 231.3 8845.7 108.6 519.7
3a.ft70.4 12210.3 243.0 179.6 11013.6 150.2 680.4 10646.7 69.6 1431.3
3a.kro124p.1 12355.8 538.1 170.7 10350.9 156.3 413.9 9159.2 186.1 1056.4
3a.kro124p.2 13466.0 449.9 158.7 10964.4 356.1 391.1 9745.7 209.5 997.3
3a.kro124p.3 17491.7 480.2 172.3 14382.4 455.2 471.3 12698.9 117.3 1116.7
3a.kro124p.4 22459.5 813.4 369.1 18585.7 480.7 1267.5 16442.5 287.6 3292.2
3a.p43.1 302.2 11.2 33.4 272.7 14.7 64.4 259.8 7.5 113.5
3a.p43.2 333.7 12.3 33.2 305.4 7.7 74.8 291.9 6.33 137.3
3a.p43.3 413.1 19.4 34.9 394.1 8.3 91.6 386.9 10.7 185.0
3a.p43.4 678.1 15.6 74.6 627.8 13.8 202.3 610.1 13.00 321.7
3a.prob42 65.8 2.9 31.7 62.5 1.8 70.3 60.8 2.2 104.6
3a.prob100 808.5 50.8 128.5 495.7 22.7 414.9 452.9 13.7 884.3
3a.rbg048a 71.1 1.5 73.5 66.8 1.7 170.4 64.5 1.3 304.4
3a.rbg050c 93.0 1.1 84.6 86.6 1.3 221.7 85.7 1.4 383.7
3a.rbg109a 263.8 8.6 643.9 - - - - - -
3a.rbg150a 452.4 14.8 1462.8 - - - - - -
3a.rbg174a 533.2 11.4 2020.6 - - - - - -

3a.rbg253a† - - - - - - - - -

3a.rbg323a† - - - - - - - - -

3a.rbg341a† - - - - - - - - -

3a.rbg358a† - - - - - - - - -

3a.rbg378a† - - - - - - - - -
3a.ry48p.1 3468.3 101.2 39.5 3033.5 57.7 124.6 2927.4 47.4 225.1
3a.ry48p.2 3721.6 100.0 38.7 3240.0 89.8 119.8 3127.7 40.7 236.7
3a.ry48p.3 4410.4 184.8 47.1 3900.0 117.6 136.7 3738.5 104.1 262.9
3a.ry48p.4 5699.7 148.5 88.2 5063.9 165.6 286.0 4894.4 163.7 539.1

† Execution times were very high and the instance was therefore skipped.

14

Table 3: Results for instances with 4 agents.

Instance
kmax = 20, jmax = 20 kmax = 50, jmax = 50 kmax = 100, jmax = 100

Mean SD Time (s) Mean SD Time (s) Mean SD Time (s)

4a.ESC63 16.0 0.0 105.5 14.9 0.3 211.1 15.0 0.0 334.6
4a.ESC78 2157.6 66.8 142.5 1844.3 57.2 377.4 1723.9 52.2 759.8
4a.ft70.1 6200.7 97.5 80.2 5796.6 63.8 209.4 5642.4 52.1 445.2
4a.ft70.2 6674.3 119.5 84.4 6129.2 109.7 226.1 5943.0 58.5 511.4
4a.ft70.3 7596.2 201.7 97.9 6775.4 84.1 286.7 6436.0 95.1 670.3
4a.ft70.4 9517.8 257.0 218.2 8293.4 147.4 819.0 7779.6 169.1 1918.6
4a.kro124p.1 9546.3 379.3 206.7 - - - - - -
4a.kro124p.2 10230.0 408.1 201.8 - - - - - -
4a.kro124p.3 12614.0 824.2 227.6 - - - - - -
4a.kro124p.4 16493.0 551.3 468.5 - - - - - -
4a.prob100 521.8 28.6 197.0 - - - - - -
4a.rbg109a 212.6 10.4 781.7 - - - - - -
4a.rbg150a 363.0 5.1 1738.5 - - - - - -
4a.rbg174a 452.6 4.8 2338.9 - - - - - -
4a.rbg253a 715.5 15.8 11451.0 - - - - - -
4a.rbg323a 869.3 25.5 27086.0 - - - - - -
4a.rbg341a 825.4 13.3 30213.0 - - - - - -

4a.rbg358a† - - - - - - - - -

4a.rbg378a† - - - - - - - - -

† Execution times were very high and the instance was therefore skipped.

7 Conclusions and future work

In this paper we have described the hitherto fairly unexplored problem PCGmTSP. To match the un-
derlying applications prompting this investigation we considered the variant with minmax objective, and
where precedence constraints between agents are included and interpreted in the soft sense so that they
may be violated causing delays. This complicates the algorithms and also renders objective function
evaluation relatively expensive. We developed some techniques for handling inter agent precedence con-
straints by letting some cheaply calculated estimates of agent tour times guide the full solution evaluation
to a few number of promising candidate solutions. These techniques were incorporated together with
local node assignment procedures into the already established local search heuristics path preserving
3-opt, String Move and Delay Removal. These heuristics were then included in a Hybrid Ant Colony
Search (HACS) algorithm which was tested on a series of test bed problems developed by adding groups
structure to standard SOP instances. The preliminary conclusions to be drawn from these experiments
are that this is indeed a very difficult problem which requires a heavy computational load to reach good
solutions.

There are many possible paths for further investigations into this complicated problem, and we
will listen a few below which have attracted our main interest. To start with, other meta heuristics
could be tried as well. We did some preliminary tests with a pretty standard tabu search method, but
it performed significantly worse than HACS so we did not explore it further. We conjecture that it
needs to be augmented with some more elaborate long time memory structures for better sampling and
exploration of the solution space. A genetic algorithm may also be well suited to this kind of problem
where objective value computation is relatively expensive, especially for dense precedence constraints
where it is difficult to predict the outcome of a local change.

Since the main bottleneck of the algorithm is objective function evaluation, an obvious line of further
inquiry is to find more elaborate and efficient ways to reduce the number of such function calls. A first
simple step could be to estimate the average number of candidate solutions evaluated. If this number
is smaller than the candidate list size, the latter could be decreased and vice versa. For really dense
instances, one could question if local search should be applied at all. Perhaps a pure genetic algorithms
would be better in this case.

In order to better assess the solution quality of heuristics, methods for obtaining an optimum or a
lower bound on the optimum may be interesting.

15

References

[1] P. Toth and D. Vigo, The Vehicle Routing Problem, Society for Industrial and Applied Mathematics
(2002).

[2] B. Golden, S. Raghavan, E. Wasil, The Vehicle Routing Problem: Latest Advances and New Chal-
lenges, Springer (2008).

[3] B.L. Golden, G. Laporte, E.D. Taillard, An adaptive memory heuristic for a class of vehicle routing
problems with minmax objective, Computers & Operations Research 24(5) (1997), pp. 445-452.

[4] S. Somhom, A. Modares, T. Enkawa, Competition-based neural network for the multiple travel-
ling salesmen problem with minmax objective, Computers & Operations Research 26 (1999), pp.
395—407.

[5] S. Yuan, B. Skinner, S. Huang, D. Liu, A new crossover approach for solving the multiple travelling
salesmen problem using genetic algorithms, European Journal of Operational Research 228 (2013),
pp. 72-82.

[6] P. Venkatesh and A. Singh, Two metaheuristic approaches for the multiple traveling salesperson
problem, Applied Soft Computing 26 (2015), pp. 74-89.

[7] B. Soylu, A general variable neighborhood search heuristic for multiple traveling salesmen problem,
Computers & Industrial Engineering 90 (2015), pp. 390-401.

[8] Y. Wang, Y. Chen, Y. Lin, Memetic algorithm based on sequential variable neighborhood descent for
the minmax multiple traveling salesman problem, Computers & Industrial Engineering 106 (2017),
pp. 105-122.

[9] A. van Breedam, Improvement Heuristics for the Vehicle Routing Problem based on Simulated An-
nealing, European Journal of Operational Research 86 (1995), pp. 480-490.

[10] E. Balas, Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration Algorithm, Oper-
ations Research 17(6) (1969), pp. 941-957.

[11] A. Allahverdi, C.T. Ng, T.C.E. Cheng, Mikhail Y. Kovalyov, A survey of scheduling problems with
setup times or costs, European Journal of Operational Research 187 (208), pp. 985-1032.

[12] A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs, Eu-
ropean Journal of Operational Research 246 (215), pp. 345-378.

[13] L.F. Escudero A inexact algorithm for the sequential ordering problem, European Journal of Oper-
ational Research 37(2) (1988), pp. 236-249.

[14] N. Ascheuer, M. Jünger, G. Reinelt, A Branch & Cut Algorithm for the Asymmetric Traveling
Salesman Problem with Precedence Constraints, Computational Optimization and Applications 17
(2000), pp. 61-84.

[15] A.A. Ciré and WJ. van Hoeve, Multivalued Decision Diagrams for Sequencing Problems, Lecture
Notes in Computer Science vol 8656 (2014).

[16] L. Gouveia and M. Ruthmair, Load-dependent and precedence-based models for pickup and delivery
problems, Computers & Operations Research 63 (2015).

[17] L.M Gambardella and M. Dorigo, An Ant Colony System Hybridized with a New Local Search for
the Sequential Ordering Problem, INFORMS Journal on Computing 12(3) (2000), pp 237-255.

[18] D. Anghinolfi, R. Montemanni, M. Paolucci, L.M. Gambardella, A hybrid particle swarm optimiza-
tion approach for the sequential ordering problem, Computers & Operations Research 38 (2011), pp.
1076–1085.

[19] J. Sung and B. Jeong, An Adaptive Evolutionary Algorithm for the Traveling Salesman Problem
with Precedence Constraints, The Scientific World Journal Volume 2014 (2014).

16

[20] S.S. Srivastava, S. Kumar, R.C. Garg, P. Sen, Generalized travelling salesman problem through n
sets of nodes, CORS Journal 7(2) (1969), pp. 97-101.

[21] G. Laporte and Y. Nobert, Generalized travelling salesman problem through n sets of nodes: an in-
teger programming approach, INFOR: Information Systems and Operational Research 21(1) (1983),
pp. 61-75.

[22] G. Laporte, H. Mercure, Y. Nobert, Finding the shortest Hamiltonian circuit through n-clusters,
Congressus Numerantium (1985), pp. 277-290.

[23] G. Laporte, H. Mercure, Y. Nobert, Generalized Travelling Salesman Problem Through n Sets Of
Nodes: The Asymmetrical Case, Discrete Applied Mathematics 18 (1987), pp. 185-197.

[24] C.E. Noon and J.C. Bean, A Lagrangian Based Approach for the Asymmetric Generalized Traveling
Salesman Problem, Operations Research 39(4) (1991), pp. 623-632.

[25] M. Fischetti, J.J. Salazar Gonsalez, P. Toth, A Branch-And-Cut Algorithm for the Symmetric Gen-
eralized Traveling Salesman Problem, Operations Research 45(3) (1997), pp. 378–394.

[26] L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the generalized traveling salesman
problem, European Journal of Operational Research 174 (2006), pp. 38–53.

[27] G. Gutin, D. Karapetyan, N. Krasnogor, A memetic algorithm for the generalized traveling salesman
problem, Natural Computing 9 (2010), pp. 47–60.

[28] D. Karapetyan and G. Gutin, Lin–Kernighan heuristic adaptations for the generalized traveling
salesman problem, European Journal of Operational Research 208(3) (2011), pp. 221–232.

[29] K. Helsgaun, Solving the equality generalized traveling salesman problem using the
Lin–Kernighan–Helsgaun Algorithm, Mathematical Programming Computation 7(3) (2015),
pp. 269-287.

[30] S.L. Smith and F. Imeson, GLNS: An effective large neighborhood search heuristic for the Generalized
Traveling Salesman Problem, Computers & Operations Research 87 (2017), pp. 1-19.

[31] C.E. Noon and J.C. Bean, An Efficient Transformation Of The Generalized Traveling Salesman
Problem, INFOR: Information Systems and Operational Research 31(1) (1993), pp. 39-44.

[32] YN. Lien, Transformation of the generalized traveling-salesman problem into the standard traveling-
salesman problem, Information Sciences 74(1-2) (1993), pp. 177-189.

[33] V. Dimitrijević, An efficient transformation of the generalized traveling salesman problem into the
traveling salesman problem on digraphs, Information Sciences 102(1-4) (1997), pp. 105-110.

[34] A. Chentsov, M, Khachay, D. Khachay, Linear time algorithm for Precedence Constrained Asym-
metric Generalized Traveling Salesman Problem, IFAC-PapersOnLine 49(12) (2016), pp. 651-655.

[35] K. Castelino, R. D’Souza, P.K. Wright, Toolpath optimization for minimizing airtime during ma-
chining, Journal of Manufacturing Systems 22(3) (2003), pp. 173-180.

[36] R. Salman, J.S. Carlson, F. Ekstedt, D. Spensieri, J. Torstensson, R. Söderberg, An industrially
validated CMM inspection process with sequence constraints, Procedia CIRP Volume 44 (2016), pp.
138-143.

[37] V. Kachitvichyanukul, P. Sombuntham, S. Kunnapapdeelert, Two solution representations for solv-
ing multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO, Com-
puters & Industrial Engineering 89 (2015), pp. 125-136.

[38] A. Goel and V. Gruhn, A General Vehicle Routing Problem, European Journal of Operational
Research 191 (2008), pp. 650-660.

[39] W. Malik, S. Rathinam, S. Darbha, An approximation algorithm for a symmetric Generalized Mul-
tiple Depot, Multiple Travelling Salesman Problem, Operations Research Letters 35 (2007), pp.
747–753.

17

[40] D. Spensieri, J.S. Carlson, F. Ekstedt, R. Bohlin, An Iterative Approach for Collision Free Routing
and Scheduling in Multirobot Stations, IEEE Transactions on Automation Science and Engineering
13(2) (2016), pp. 950-962.

[41] M. Afzalirad and J. Rezaeian, Resource-constrained unrelated parallel machine scheduling problem
with sequence dependent setup times, precedence constraints and machine eligibility restrictions,
Computers & Industrial Engineering 98 (2016), pp. 40-52.

[42] S.C. Sarin, H.D. Sherali, J.D. Judd, P-F. Tsai, Multiple asymmetric traveling salesmen problem with
and without precedence constraints: Performance comparison of alternative formulations, Computers
& Operations Research 51 (2014), pp. 64-89.

[43] A.H. Gharehgozli, G. Laporte, Y. Yu, R. de Koster, Scheduling Twin Yard Cranes in a Container
Block, Transportation Science 49(3) (2017), pp. 685-705.

[44] J. Blazewicz, W. Domschkeb, E. Pesch, The job shop scheduling problem: Conventional and new
solution techniques, European Journal of Operational Research 93(1) (1996), pp. 1-33.

18

	Abstract
	Acknowledgments
	List of Publications
	Introduction
	Background
	A Review of Methods for TSP Variants
	Contribution
	Outline

	Problem Descriptions
	Single Agent PCGTSP
	Multiple Agent PCGTSP
	Disjunctive Graph

	Approximating and Solving the Single Agent PCGTSP
	Hybridized Ant Colony System (HACS)
	Vertex Selection
	Path Preserving 3-opt

	Branch-and-Bound Algorithm
	Bounding Methods
	An Alternative Assignment Problem Bound

	History Utilization

	Approximating the Multiple Agent PCGTSP
	Hybridized Ant Colony System (HACS)
	Local Search Procedure
	Vertex Selection
	Path Preserving 3-opt
	String Move
	Delay Removal

	Results
	Conclusions and Future Work
	Summary of Publications
	Paper I - An industrially validated CMM inspection process with sequence constraints
	Paper II - Branch-and-bound for the Precedence Constrained Generalized Traveling Salesman Problem
	Paper III - A Hybridized Ant Colony System Approach to the Precedence Constrained Generalized Multiple Traveling Salesman Problem

	References
	Paper I
	Paper II
	Paper III

