Iterative method for large-scale Timoshenko beam models assessed on commercial-grade paperboard

M. Görtz, G. Kettil., A. Målqvist, M. Fredlund, F. Edelvik. Computational Mechanics. 10 May 2024.


Large-scale structural simulations based on micro-mechanical models of paper products require extensive numerical resources and time. In such models, the fibrous material is often represented by connected beams. Whereas previous micro-mechanical simulations have been restricted to smaller sample problems, large-scale micro-mechanical models are considered here. These large-scale simulations are possible on a non-specialized desktop computer with 128GB of RAM using an iterative method developed for network models and based on domain decomposition. Moreover, this method is parallelizable and is also well-suited for computational clusters. In this work, the proposed memory-efficient iterative method is numerically validated for linear systems resulting from large networks of Timoshenko beams. Tensile stiffness and out-of-plane bending stiffness are simulated and validated for various commercial-grade three-ply paperboards consisting of layers composed of two different types of paper fibers. The results of these simulations show that a linear network model produces results consistent with theory and published experimental data.

Photo credits: Nic McPhee