Abstract
In this paper a numerical multiscale method for discrete networks is presented. The method gives an accurate coarse scale representation of the full network by solving sub-network problems. The method is used to solve problems with highly varying connectivity or random network structure, showing optimal order convergence rates with respect to the mesh size of the coarse representation. Moreover, a network model for paper-based materials is presented. The numerical multiscale method is applied to solve problems governed by the presented network model.